
Robotics System Toolbox™
User’s Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Robotics System Toolbox™ User Guide
© COPYRIGHT 2015–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2015 Online only New for Version 1.0 (R2015a)
September 2015 Online only Revised for Version 1.1 (R2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 1.2 (R2016a)
September 2016 Online only Revised for Version 1.3 (R2016b)
March 2017 Online only Revised for Version 1.4 (R2017a)
September 2017 Online only Revised for Version 1.5 (R2017b)
March 2018 Online only Revised for Version 2.0 (R2018a)
September 2018 Online only Revised for Version 2.1 (R2018b)
March 2019 Online only Revised for Version 2.2 (R2019a)
September 2019 Online only Revised for Version 3.0 (R2019b)

Robotics System Toolbox Topics
1

Rigid Body Tree Robot Model . 1-2
Rigid Body Tree Components . 1-2
Robot Configurations . 1-5

Build a Robot Step by Step . 1-8

Inverse Kinematics Algorithms . 1-13
Choose an Algorithm . 1-13
Solver Parameters . 1-14
Solution Information . 1-15
References . 1-16

2-D Path Tracing With Inverse Kinematics 1-18

Solve Inverse Kinematics for a Four-Bar Linkage 1-23

Robot Dynamics . 1-28
Dynamics Properties . 1-28
Dynamics Functions . 1-29

Occupancy Grids . 1-30
Overview . 1-30
World, Grid, and Local Coordinates . 1-31
Inflation of Coordinates . 1-32

Probabilistic Roadmaps (PRM) . 1-36
Tune the Number of Nodes . 1-36
Tune the Connection Distance . 1-40
Create or Update PRM . 1-43

Pure Pursuit Controller . 1-47
Reference Coordinate System . 1-47

v

Contents

Look Ahead Distance . 1-48
Limitations . 1-49

Particle Filter Parameters . 1-50
Number of Particles . 1-50
Initial Particle Location . 1-51
State Transition Function . 1-53
Measurement Likelihood Function . 1-54
Resampling Policy . 1-54
State Estimation Method . 1-55

Particle Filter Workflow . 1-57
Estimation Workflow . 1-57

Standard Units for Robotics System Toolbox 1-62

Coordinate Transformations in Robotics 1-63
Axis-Angle . 1-63
Euler Angles . 1-64
Homogeneous Transformation Matrix 1-64
Quaternion . 1-65
Rotation Matrix . 1-65
Translation Vector . 1-66
Conversion Functions and Transformations 1-66

Execute Code at a Fixed-Rate . 1-68
Introduction . 1-68
Run Loop at Fixed Rate . 1-68
Overrun Actions for Fixed Rate Execution 1-69

Accelerate Robotics Algorithms with Code Generation 1-71
Create Separate Function for Algorithm 1-71
Perform Code Generation for Algorithm 1-72
Check Performance of Generated Code 1-72
Replace Algorithm Function with MEX Function 1-73

Install Robotics System Toolbox Add-ons 1-76

Code Generation from MATLAB Code 1-77

Code Generation Support . 1-79

vi Contents

Examples for Simulink Blocks
2

Convert Coordinate System Transformations 2-2

Compute Geometric Jacobian for Manipulators in Simulink
. 2-3

Get Transformations for Manipulator Bodies in Simulink 2-5

Calculate Manipulator Gravity Dynamics in Simulink 2-8

Trace An End-Effector Trajectory with Inverse Kinematics in
Simulink . 2-10

Get Mass Matrix for Manipulators in Simulink 2-17

Generate Heading and Yaw Commands for Orbit Following in
Simulink® . 2-20

Generate Cubic Polynomial Trajectory 2-22

Generate B-Spline Trajectory . 2-25

Generate Rotation Trajectory . 2-28

Use Custom Time Scaling for a Rotation Trajectory 2-30

Execute Transformation Trajectory Using Manipulator and
Inverse Kinematics . 2-32

Use Custom Time Scaling for a Transform Trajectory 2-35

Generate Trapezoidal Velocity Trajectory 2-37

Compute Velocity Product for Manipulators in Simulink . . . 2-41

Plan Path for a Unicycle Robot in Simulink 2-44

Plan Path for a Differential Drive Robot in Simulink 2-51

Plan Path for a Bicycle Robot in Simulink 2-57

vii

Plot Ackermann Drive Vehicle in Simulink 2-64

Follow Joint Space Trajectory in Simulink 2-66

Follow Task Space Trajectory in Simulink 2-70

viii Contents

Robotics System Toolbox Topics

• “Rigid Body Tree Robot Model” on page 1-2
• “Build a Robot Step by Step” on page 1-8
• “Inverse Kinematics Algorithms” on page 1-13
• “2-D Path Tracing With Inverse Kinematics” on page 1-18
• “Solve Inverse Kinematics for a Four-Bar Linkage” on page 1-23
• “Robot Dynamics” on page 1-28
• “Occupancy Grids” on page 1-30
• “Probabilistic Roadmaps (PRM)” on page 1-36
• “Pure Pursuit Controller” on page 1-47
• “Particle Filter Parameters” on page 1-50
• “Particle Filter Workflow” on page 1-57
• “Standard Units for Robotics System Toolbox” on page 1-62
• “Coordinate Transformations in Robotics” on page 1-63
• “Execute Code at a Fixed-Rate” on page 1-68
• “Accelerate Robotics Algorithms with Code Generation” on page 1-71
• “Install Robotics System Toolbox Add-ons” on page 1-76
• “Code Generation from MATLAB Code” on page 1-77
• “Code Generation Support” on page 1-79

1

Rigid Body Tree Robot Model
In this section...
“Rigid Body Tree Components” on page 1-2
“Robot Configurations” on page 1-5

The rigid body tree model is a representation of a robot structure. You can use it to
represent robots such as manipulators or other kinematic trees. Use rigidBodyTree
objects to create these models.

A rigid body tree is made up of rigid bodies (rigidBody) that are attached via joints
(rigidBodyJoint). Each rigid body has a joint that defines how that body moves relative
to its parent in the tree. Specify the transformation from one body to the next by setting
the fixed transformation on each joint (setFixedTransform).

You can add, replace, or remove bodies from the rigid body tree model. You can also
replace joints for specific bodies. The rigidBodyTree object maintains the relationships
and updates the rigidBody object properties to reflect this relationship. You can also get
transformations between different body frames using getTransform.

Rigid Body Tree Components
Base

Every rigid body tree has a base. The base defines the world coordinate frame and is the
first attachment point for a rigid body. The base cannot be modified, except for the Name
property. You can do so by modifying the BaseName property of the rigid body tree.

Rigid Body

The rigid body is the basic building block of rigid body tree model and is created using
rigidBody. A rigid body, sometimes called a link, represents a solid body that cannot
deform. The distance between any two points on a single rigid body remains constant.

1 Robotics System Toolbox Topics

1-2

When added to a rigid body tree with multiple bodies, rigid bodies have parent or
children bodies associated with them (Parent or Children properties). The parent is the
body that this rigid body is attached to, which can be the robot base. The children are all
the bodies attached to this body downstream from the base of the rigid body tree.

Each rigid body has a coordinate frame associated with them, and contains a
rigidBodyJoint object.

Joint

Each rigid body has one joint, which defines the motion of that rigid body relative to its
parent. It is the attachment point that connects two rigid bodies in a robot model. To
represent a single physical body with multiple joints or different axes of motion, use
multiple rigidBody objects.

The rigidBodyJoint object supports fixed, revolute, and prismatic joints.

 Rigid Body Tree Robot Model

1-3

These joints allow the following motion, depending on their type:

• 'fixed' — No motion. Body is rigidly connected to its parent.
• 'revolute' — Rotational motion only. Body rotates around this joint relative to its

parent. Position limits define the minimum and maximum angular position in radians
around the axis of motion.

• 'prismatic' — Translational motion only. The body moves linearly relative to its
parent along the axis of motion.

Each joint has an axis of motion defined by the JointAxis property. The joint axis is a 3-
D unit vector that either defines the axis of rotation (revolute joints) or axis of translation
(prismatic joints). The HomePosition property defines the home position for that specific
joint, which is a point within the position limits. Use homeConfiguration to return the
home configuration for the robot, which is a collection of all the joints home positions in
the model.

Joints also have properties that define the fixed transformation between parent and
children body coordinate frames. These properties can only be set using the
setFixedTransform method. Depending on your method of inputting transformation
parameters, either the JointToParentTransform or ChildToJointTransform
property is set using this method. The other property is set to the identity matrix. The
following images depict what each property signifies.

1 Robotics System Toolbox Topics

1-4

• The JointToParentTransform defines where the joint of the child body is in
relationship to the parent body frame. When JointToParentTransform is an
identity matrix, the parent body and joint frames coincide.

• The ChildToJointTransform defines where the joint of the child body is in
relationship to the child body frame. When ChildToJointTransform is an identity
matrix, the child body and joint frames coincide.

Note The actual joint positions are not part of this Joint object. The robot model is
stateless. There is an intermediate transformation between the parent and child joint
frames that defines the position of the joint along the axis of motion. This transformation
is defined in the robot configuration. See “Robot Configurations” on page 1-5.

Robot Configurations
After fully assembling your robot and defining transformations between different bodies,
you can create robot configurations. A configuration defines all the joint positions of the
robot by their joint names.

Use homeConfiguration to get the HomePosition property of each joint and create
the home configuration.

Robot configurations are given as an array of structures.

config = homeConfiguration(robot)

config =

 1×6 struct array with fields:

 JointName
 JointPosition

Each element in the array is a structure that contains the name and position of one of the
robot joints.

config(1)

 Rigid Body Tree Robot Model

1-5

ans =

 struct with fields:

 JointName: 'jnt1'
 JointPosition: 0

You can also generate a random configuration that obeys all the joint limits using
randomConfiguration.

1 Robotics System Toolbox Topics

1-6

Use robot configurations when you want to plot a robot in a figure using show. Also, you
can get the transformation between two body frames with a specific configuration using
getTransform.

To get the robot configuration with a specified end-effector pose, use
inverseKinematics. This algorithm solves for the required joint angles to achieve a
specific pose for a specified rigid body.

See Also
inverseKinematics | rigidBodyTree

Related Examples
• “Build a Robot Step by Step” on page 1-8
• “Inverse Kinematics Algorithms” on page 1-13

 See Also

1-7

Build a Robot Step by Step
This example goes through the process of building a robot step by step, showing you the
different robot components and how functions are called to build it. Code sections are
shown, but actual values for dimensions and transformations depend on your robot.

1 Create a rigid body object.

body1 = rigidBody('body1');

2 Create a joint and assign it to the rigid body. Define the home position property of the
joint, HomePosition. Set the joint-to-parent transform using a homogeneous
transformation, tform. Use the trvec2tform function to convert from a translation
vector to a homogenous transformation.ChildToJointTransform is set to an
identity matrix.

jnt1 = rigidBodyJoint('jnt1','revolute');
jnt1.HomePosition = pi/4;
tform = trvec2tform([0.25, 0.25, 0]); % User defined
setFixedTransform(jnt1,tform);
body1.Joint = jnt1;

3 Create a rigid body tree. This tree is initialized with a base coordinate frame to
attach bodies to.

robot = rigidBodyTree;

1 Robotics System Toolbox Topics

1-8

4 Add the first body to the tree. Specify that you are attaching it to the base of the tree.
The fixed transform defined previously is from the base (parent) to the first body.

addBody(robot,body1,'base')

5 Create a second body. Define properties of this body and attach it to the first rigid
body. Define the transformation relative to the previous body frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
jnt2.HomePosition = pi/6; % User defined
tform2 = trvec2tform([1, 0, 0]); % User defined
setFixedTransform(jnt2,tform2);
body2.Joint = jnt2;
addBody(robot,body2,'body1'); % Add body2 to body1

6 Add other bodies. Attach body 3 and 4 to body 2.

body3 = rigidBody('body3');
body4 = rigidBody('body4');
jnt3 = rigidBodyJoint('jnt3','revolute');
jnt4 = rigidBodyJoint('jnt4','revolute');
tform3 = trvec2tform([0.6, -0.1, 0])*eul2tform([-pi/2, 0, 0]); % User defined
tform4 = trvec2tform([1, 0, 0]); % User defined
setFixedTransform(jnt3,tform3);
setFixedTransform(jnt4,tform4);
jnt3.HomePosition = pi/4; % User defined
body3.Joint = jnt3
body4.Joint = jnt4

 Build a Robot Step by Step

1-9

addBody(robot,body3,'body2'); % Add body3 to body2
addBody(robot,body4,'body2'); % Add body4 to body2

7 If you have a specific end effector that you care about for control, define it as a rigid
body with a fixed joint. For this robot, add an end effector to body4 so that you can
get transformations for it.

bodyEndEffector = rigidBody('endeffector');
tform5 = trvec2tform([0.5, 0, 0]); % User defined
setFixedTransform(bodyEndEffector.Joint,tform5);
addBody(robot,bodyEndEffector,'body4');

8 Now that you have created your robot, you can generate robot configurations. With a
given configuration, you can also get a transformation between two body frames
using rigidBodyTree.getTransform. Get a transformation from the end effector
to the base.

config = randomConfiguration(robot)
tform = getTransform(robot,config,'endeffector','base')

config =

 1×2 struct array with fields:

 JointName
 JointPosition

tform =

 -0.5484 0.8362 0 0
 -0.8362 -0.5484 0 0
 0 0 1.0000 0
 0 0 0 1.0000

1 Robotics System Toolbox Topics

1-10

Note This transform is specific to the dimensions specified in this example. Values
for your robot vary depending on the transformations you define.

9 You can create a subtree from your existing robot or other robot models by using
subtree. Specify the body name to use as the base for the new subtree. You can
modify this subtree by adding, changing, or removing bodies.

newArm = subtree(robot,'body2');
removeBody(newArm,'body3');
removeBody(newArm,'endeffector')

10 You can also add these subtrees to the robot. Adding a subtree is similar to adding a
body. The specified body name acts as a base for attachment, and all transformations
on the subtree are relative to that body frame. Before you add the subtree, you must
ensure all the names of bodies and joints are unique. Create copies of the bodies and
joints, rename them, and replace them on the subtree. Call addSubtree to attach
the subtree to a specified body.

newBody1 = copy(getBody(newArm,'body2'));
newBody2 = copy(getBody(newArm,'body4'));
newBody1.Name = 'newBody1';
newBody2.Name = 'newBody2';
newBody1.Joint = rigidBodyJoint('newJnt1','revolute');
newBody2.Joint = rigidBodyJoint('newJnt2','revolute');
tformTree = trvec2tform([0.2, 0, 0]); % User defined
setFixedTransform(newBody1,tformTree);
replaceBody(newArm,'body2',newBody1);
replaceBody(newArm,'body4',newBody2);

addSubtree(robot,'body1',newArm);

11 Finally, you can use showdetails to look at the robot you built. Verify that the joint
types are correct.

showdetails(robot)

 Build a Robot Step by Step

1-11

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2) newBody1(6)
 2 body2 jnt2 revolute body1(1) body3(3) body4(4)
 3 body3 jnt3 revolute body2(2)
 4 body4 jnt4 revolute body2(2) endeffector(5)
 5 endeffector endeffector_jnt fixed body4(4)
 6 newBody1 newJnt1 revolute body1(1) newBody2(7)
 7 newBody2 newJnt2 revolute newBody1(6)

See Also
inverseKinematics | rigidBodyTree

Related Examples
• “Rigid Body Tree Robot Model” on page 1-2

1 Robotics System Toolbox Topics

1-12

Inverse Kinematics Algorithms
In this section...
“Choose an Algorithm” on page 1-13
“Solver Parameters” on page 1-14
“Solution Information” on page 1-15
“References” on page 1-16

The inverseKinematics and generalizedInverseKinematics classes give you
access to inverse kinematics (IK) algorithms. You can use these algorithms to generate a
robot configuration that achieves specified goals and constraints for the robot. This robot
configuration is a list of joint positions that are within the position limits of the robot
model and do not violate any constraints the robot has.

Choose an Algorithm
MATLAB® supports two algorithms for achieving an IK solution: the BFGS projection
algorithm and the Levenberg-Marquardt algorithm. Both algorithms are iterative,
gradient-based optimization methods that start from an initial guess at the solution and
seek to minimize a specific cost function. If either algorithm converges to a configuration
where the cost is close to zero within a specified tolerance, it has found a solution to the
inverse kinematics problem. However, for some combinations of initial guesses and
desired end effector poses, the algorithm may exit without finding an ideal robot
configuration. To handle this, the algorithm utilizes a random restart mechanism. If
enabled, the random restart mechanism restarts the iterative search from a random robot
configuration whenever that search fails to find a configuration that achieves the desired
end effector pose. These random restarts continue until either a qualifying IK solution is
found, the maximum time has elapsed, or the iteration limit is reached.

To set your algorithm, specify the SolverAlgorithm property as either
'BFGSGradientProjection' or 'LevenbergMarquardt'.

BFGS Gradient Projection

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) gradient projection algorithm is a quasi-
Newton method that uses the gradients of the cost function from past iterations to
generate approximate second-derivative information. The algorithm uses this second-
derivative information in determining the step to take in the current iteration. A gradient

 Inverse Kinematics Algorithms

1-13

projection method is used to deal with boundary limits on the cost function that the joint
limits of the robot model create. The direction calculated is modified so that the search
direction is always valid.

This method is the default algorithm and is more robust at finding solutions than the
Levenberg-Marquardt method. It is more effective for configurations near joint limits or
when the initial guess is not close to the solution. If your initial guess is close to the
solution and a quicker solution is needed, consider the “Levenberg-Marquardt” on page 1-
14 method.

Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm variant used in the InverseKinematics class
is an error-damped least-squares method. The error-damped factor helps to prevent the
algorithm from escaping a local minimum. The LM algorithm is optimized to converge
much faster if the initial guess is close to the solution. However the algorithm does not
handle arbitrary initial guesses well. Consider using this algorithm for finding IK solutions
for a series of poses along a desired trajectory of the end effector. Once a robot
configuration is found for one pose, that configuration is often a good initial guess at an
IK solution for the next pose in the trajectory. In this situation, the LM algorithm may
yield faster results. Otherwise, use the “BFGS Gradient Projection” on page 1-13 instead.

Solver Parameters
Each algorithm has specific tunable parameters to improve solutions. These parameters
are specified in the SolverParameters property of the object.

BFGS Gradient Projection

The solver parameters for the BFGS algorithm have the following fields:

• MaxIterations — Maximum number of iterations allowed. The default is 1500.
• MaxTime — Maximum number of seconds that the algorithm runs before timing out.

The default is 10.
• GradientTolerance — Threshold on the gradient of the cost function. The algorithm

stops if the magnitude of the gradient falls below this threshold. Must be a positive
scalar.

• SolutionTolerance — Threshold on the magnitude of the error between the end-
effector pose generated from the solution and the desired pose. The weights specified

1 Robotics System Toolbox Topics

1-14

for each component of the pose in the object are included in this calculation. Must be
a positive scalar.

• EnforceJointLimits — Indicator if joint limits are considered in calculating the
solution. JointLimits is a property of the robot model in rigidBodyTree. By
default, joint limits are enforced.

• AllowRandomRestarts — Indicator if random restarts are allowed. Random restarts
are triggered when the algorithm approaches a solution that does not satisfy the
constraints. A randomly generated initial guess is used. MaxIteration and MaxTime
are still obeyed. By default, random restarts are enabled.

• StepTolerance — Minimum step size allowed by the solver. Smaller step sizes
usually mean that the solution is close to convergence. The default is 10–14.

Levenberg-Marquardt

The solver parameters for the LM algorithm have the following extra fields in addition to
what the “BFGS Gradient Projection” on page 1-14 method requires:

• ErrorChangeTolerance — Threshold on the change in end-effector pose error
between iterations. The algorithm returns if the changes in all elements of the pose
error are smaller than this threshold. Must be a positive scalar.

• DampingBias — A constant term for damping. The LM algorithm has a damping
feature controlled by this constant that works with the cost function to control the rate
of convergence. To disable damping, use the UseErrorDamping parameter.

• UseErrorDamping — 1 (default), Indicator of whether damping is used. Set this
parameter to false to disable dampening.

Solution Information
While using the inverse kinematics algorithms, each call on the object returns solution
information about how the algorithm performed. The solution information is provided as a
structure with the following fields:

• Iterations — Number of iterations run by the algorithm.
• NumRandomRestarts — Number of random restarts because algorithm got stuck in a

local minimum.
• PoseErrorNorm — The magnitude of the pose error for the solution compared to the

desired end effector pose.

 Inverse Kinematics Algorithms

1-15

• ExitFlag — Code that gives more details on the algorithm execution and what
caused it to return. For the exit flags of each algorithm type, see “Exit Flags” on page
1-16.

• Status — Character vector describing whether the solution is within the tolerance
('success') or the best possible solution the algorithm could find ('best
available').

Exit Flags

In the solution information, the exit flags give more details on the execution of the
specific algorithm. Look at the Status property of the object to find out if the algorithm
was successful. Each exit flag code has a defined description.

'BFGSGradientProjection' algorithm exit flags:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepToleranceSize field of the

SolverParameters property.
• 5 — No exit flag. Relevant to 'LevenbergMarquardt' algorithm only.
• 6 — Search direction invalid.
• 7 — Hessian is not positive semidefinite.

'LevenbergMarquardt' algorithm exit flags:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepToleranceSize field of the

SolverParameters property.
• 5 — The change in end-effector pose error is below the ErrorChangeTolerance field

of the SolverParameters property.

References
[1] Badreddine, Hassan, Stefan Vandewalle, and Johan Meyers. "Sequential Quadratic

Programming (SQP) for Optimal Control in Direct Numerical Simulation of

1 Robotics System Toolbox Topics

1-16

Turbulent Flow." Journal of Computational Physics. 256 (2014): 1–16. doi:10.1016/
j.jcp.2013.08.044.

[2] Bertsekas, Dimitri P. Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[3] Goldfarb, Donald. "Extension of Davidon’s Variable Metric Method to Maximization
Under Linear Inequality and Equality Constraints." SIAM Journal on Applied
Mathematics. Vol. 17, No. 4 (1969): 739–64. doi:10.1137/0117067.

[4] Nocedal, Jorge, and Stephen Wright. Numerical Optimization. New York, NY: Springer,
2006.

[5] Sugihara, Tomomichi. "Solvability-Unconcerned Inverse Kinematics by the Levenberg–
Marquardt Method." IEEE Transactions on Robotics Vol. 27, No. 5 (2011): 984–91.
doi:10.1109/tro.2011.2148230.

[6] Zhao, Jianmin, and Norman I. Badler. "Inverse Kinematics Positioning Using Nonlinear
Programming for Highly Articulated Figures." ACM Transactions on Graphics Vol.
13, No. 4 (1994): 313–36. doi:10.1145/195826.195827.

See Also
generalizedInverseKinematics | inverseKinematics | rigidBodyTree

Related Examples
• “2-D Path Tracing With Inverse Kinematics” on page 1-18
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
• “Rigid Body Tree Robot Model” on page 1-2

 See Also

1-17

2-D Path Tracing With Inverse Kinematics
Introduction

This example shows how to calculate inverse kinematics for a simple 2D manipulator
using the inverseKinematics class. The manipulator robot is a simple 2-degree-of-
freedom planar manipulator with revolute joints which is created by assembling rigid
bodies into a rigidBodyTree object. A circular trajectory is created in a 2-D plane and
given as points to the inverse kinematics solver. The solver calculates the required joint
positions to achieve this trajectory. Finally, the robot is animated to show the robot
configurations that achieve the circular trajectory.

Construct The Robot

Create a rigidBodyTree object and rigid bodies with their associated joints. Specify the
geometric properties of each rigid body and add it to the robot.

Start with a blank rigid body tree model.

robot = rigidBodyTree('DataFormat','column','MaxNumBodies',3);

Specify arm lengths for the robot arm.

L1 = 0.3;
L2 = 0.3;

Add 'link1' body with 'joint1' joint.

body = rigidBody('link1');
joint = rigidBodyJoint('joint1', 'revolute');
setFixedTransform(joint,trvec2tform([0 0 0]));
joint.JointAxis = [0 0 1];
body.Joint = joint;
addBody(robot, body, 'base');

Add 'link2' body with 'joint2' joint.

body = rigidBody('link2');
joint = rigidBodyJoint('joint2','revolute');
setFixedTransform(joint, trvec2tform([L1,0,0]));
joint.JointAxis = [0 0 1];
body.Joint = joint;
addBody(robot, body, 'link1');

1 Robotics System Toolbox Topics

1-18

Add 'tool' end effector with 'fix1' fixed joint.

body = rigidBody('tool');
joint = rigidBodyJoint('fix1','fixed');
setFixedTransform(joint, trvec2tform([L2, 0, 0]));
body.Joint = joint;
addBody(robot, body, 'link2');

Show details of the robot to validate the input properties. The robot should have two non-
fixed joints for the rigid bodies and a fixed body for the end-effector.

showdetails(robot)

Robot: (3 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 link1 joint1 revolute base(0) link2(2)
 2 link2 joint2 revolute link1(1) tool(3)
 3 tool fix1 fixed link2(2)

Define The Trajectory

Define a circle to be traced over the course of 10 seconds. This circle is in the xy plane
with a radius of 0.15.

t = (0:0.2:10)'; % Time
count = length(t);
center = [0.3 0.1 0];
radius = 0.15;
theta = t*(2*pi/t(end));
points = center + radius*[cos(theta) sin(theta) zeros(size(theta))];

Inverse Kinematics Solution

Use an inverseKinematics object to find a solution of robotic configurations that
achieve the given end-effector positions along the trajectory.

Pre-allocate configuration solutions as a matrix qs.

q0 = homeConfiguration(robot);
ndof = length(q0);
qs = zeros(count, ndof);

 2-D Path Tracing With Inverse Kinematics

1-19

Create the inverse kinematics solver. Because the xy Cartesian points are the only
important factors of the end-effector pose for this workflow, specify a non-zero weight for
the fourth and fifth elements of the weight vector. All other elements are set to zero.

ik = inverseKinematics('RigidBodyTree', robot);
weights = [0, 0, 0, 1, 1, 0];
endEffector = 'tool';

Loop through the trajectory of points to trace the circle. Call the ik object for each point
to generate the joint configuration that achieves the end-effector position. Store the
configurations to use later.

qInitial = q0; % Use home configuration as the initial guess
for i = 1:count
 % Solve for the configuration satisfying the desired end effector
 % position
 point = points(i,:);
 qSol = ik(endEffector,trvec2tform(point),weights,qInitial);
 % Store the configuration
 qs(i,:) = qSol;
 % Start from prior solution
 qInitial = qSol;
end

Animate The Solution

Plot the robot for each frame of the solution using that specific robot configuration. Also,
plot the desired trajectory.

Show the robot in the first configuration of the trajectory. Adjust the plot to show the 2-D
plane that circle is drawn on. Plot the desired trajectory.

figure
show(robot,qs(1,:)');
view(2)
ax = gca;
ax.Projection = 'orthographic';
hold on
plot(points(:,1),points(:,2),'k')
axis([-0.1 0.7 -0.3 0.5])

1 Robotics System Toolbox Topics

1-20

Set up a rateControl object to display the robot trajectory at a fixed rate of 15 frames
per second. Show the robot in each configuration from the inverse kinematic solver.
Watch as the arm traces the circular trajectory shown.

framesPerSecond = 15;
r = rateControl(framesPerSecond);
for i = 1:count
 show(robot,qs(i,:)','PreservePlot',false);
 drawnow
 waitfor(r);
end

 2-D Path Tracing With Inverse Kinematics

1-21

See Also
InverseKinematics | Joint | RigidBody | RigidBodyTree

Related Examples
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
• “Inverse Kinematics Algorithms” on page 1-13

1 Robotics System Toolbox Topics

1-22

Solve Inverse Kinematics for a Four-Bar Linkage
This example shows how to solve inverse kinematics for a four-bar linkage, a simple
planar closed-chain linkage. Robotics System Toolbox™ doesn't directly support closed-
loop mechanisms. However, the loop-closing joints can be approximated using kinematic
constraints. This example shows how to setup a rigid body tree for a four-bar linkage,
specify the kinematic constraints, and solve for a desired end-effector position.

Initialize the four-bar linkage rigid body tree model.

robot = rigidBodyTree('Dataformat','column','MaxNumBodies',7);

Define body names, parent names, joint names, joint types, and fixed transforms in cell
arrays. The fixed transforms define the geometry of the four-bar linkage. The linkage
rotates in the xz-plane. An offset of -0.1 is used in the y-axis on the 'b4' body to isolate
the motion of the overlapping joints for 'b3' and 'b4'.

bodyNames = {'b1','b2','b3','b4','b5','b6'};
parentNames = {'base','b1','b2','base','b4','b5'};
jointNames = {'j1','j2','j3','j4','j5','j6'};
jointTypes = {'revolute','revolute','fixed','revolute','revolute','fixed'};
fixedTforms = {eye(4), ...
 trvec2tform([0 0 0.5]), ...
 trvec2tform([0.8 0 0]), ...
 trvec2tform([0.0 -0.1 0]), ...
 trvec2tform([0.8 0 0]), ...
 trvec2tform([0 0 0.5])};

Use a for loop to assemble the four-bar linkage:

• Create a rigid body and specify the joint type.
• Specify the JointAxis property for any non-fixed joints.
• Specify the fixed transformation.
• Add the body to the rigid body tree.

for k = 1:6

 b = rigidBody(bodyNames{k});
 b.Joint = rigidBodyJoint(jointNames{k},jointTypes{k});

 if ~strcmp(jointTypes{k},'fixed')
 b.Joint.JointAxis = [0 1 0];

 Solve Inverse Kinematics for a Four-Bar Linkage

1-23

 end

 b.Joint.setFixedTransform(fixedTforms{k});

 addBody(robot,b,parentNames{k});
end

Add a final body to function as the end-effector (handle) for the four-bar linkage.

bn = 'handle';
b = rigidBody(bn);
setFixedTransform(b.Joint,trvec2tform([0 -0.15 0]));
addBody(robot,b,'b6');

Specify kinematic constraints for the GeneralizedInverseKinematics object:

• Position constraint 1 : The origins of 'b3' body frame and 'b6' body frame should
always overlap. This keeps the handle in line with the approximated closed-loop
mechanism. Use the -0.1 offset for the y-coordinate.

• Position constraint 2 : End-effector should target the desired position.
• Joint limit bounds : Satisfy the joint limits in the rigid body tree model.

gik = generalizedInverseKinematics('RigidBodyTree',robot);
gik.ConstraintInputs = {'position',... % Position constraint for closed-loop mechanism
 'position',... % Position constraint for end-effector
 'joint'}; % Joint limits
gik.SolverParameters.AllowRandomRestart = false;

% Position constraint 1
positionTarget1 = constraintPositionTarget('b6','ReferenceBody','b3');
positionTarget1.TargetPosition = [0 -0.1 0];
positionTarget1.Weights = 50;
positionTarget1.PositionTolerance = 1e-6;

% Joint limit bounds
jointLimBounds = constraintJointBounds(gik.RigidBodyTree);
jointLimBounds.Weights = ones(1,size(gik.RigidBodyTree.homeConfiguration,1))*10;

% Position constraint 2
desiredEEPosition = [0.9 -0.1 0.9]'; % Position is relative to base.
positionTarget2 = constraintPositionTarget('handle');
positionTarget2.TargetPosition = desiredEEPosition;
positionTarget2.PositionTolerance = 1e-6;
positionTarget2.Weights = 1;

1 Robotics System Toolbox Topics

1-24

Compute the kinematic solution using the gik object. Specify the initial guess and the
different kinematic constraints in the proper order.

iniGuess = homeConfiguration(robot);
[q, solutionInfo] = gik(iniGuess,positionTarget1,positionTarget2,jointLimBounds);

Examine the results in solutionInfo. Show the kinematic solution compared to the
home configuration. Plots are shown in the xz-plane.

loopClosingViolation = solutionInfo.ConstraintViolations(1).Violation;
jointBndViolation = solutionInfo.ConstraintViolations(2).Violation;
eePositionViolation = solutionInfo.ConstraintViolations(3).Violation;

subplot(1,2,1)
show(robot,homeConfiguration(robot));
title('Home Configuration')
view([0 -1 0]);
subplot(1,2,2)
show(robot,q);
title('GIK Solution')
view([0 -1 0]);

 Solve Inverse Kinematics for a Four-Bar Linkage

1-25

See Also
Classes
constraintJointBounds | constraintPoseTarget |
generalizedInverseKinematics | inverseKinematics | rigidBodyTree

Related Examples
• “Rigid Body Tree Robot Model” on page 1-2
• “Plan a Reaching Trajectory With Multiple Kinematic Constraints”

1 Robotics System Toolbox Topics

1-26

• “Control LBR Manipulator Motion Through Joint Torque Commands”

 See Also

1-27

Robot Dynamics
In this section...
“Dynamics Properties” on page 1-28
“Dynamics Functions” on page 1-29

Robot dynamics is the relationship between the forces acting on a robot and the resulting
motion of the robot. In Robotics System Toolbox, manipulator dynamics information is
contained within a rigidBodyTree object. This object describes a rigid body tree model
that has multiple rigidBody objects connected through rigidBodyJoint objects. The
rigidBodyJoint, rigidBody, and rigidBodyTree objects all contain information
related to the robot kinematics and dynamics.

Note To use dynamics functions, you must set the DataFormat property to 'row' or
'column'. This setting takes inputs and gives outputs as row or column vectors for
relevant robotics calculations, such as robot configurations or joint torques.

Dynamics Properties
When working with robot dynamics, specify the information for individual bodies of your
manipulator robot using properties on the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as an [x y z]

vector. The vector describes the location of the center of mass relative to the body
frame in meters.

• Inertia — Inertia of rigid body, specified as an [Ixx Iyy Izz Iyz Ixz Ixy]
vector relative to the body frame in kilogram square meters. The first three elements
of the vector are the diagonal elements of the inertia tensor (moment of inertia). The
last three elements are the off-diagonal elements of the inertia tensor (product of
inertia). The inertia tensor is a positive definite matrix:

1 Robotics System Toolbox Topics

1-28

For information related to your whole manipulator robot model, specify these
RigidBodyTree object properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y
z] vector in meters per second squared. By default, there is no gravitational
acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics
functions. Set this property to 'row' or 'column' to use dynamics functions. This
setting takes inputs and gives outputs as row or column vectors for relevant robotics
calculations, such as robot configurations or joint torques.

Dynamics Functions
The following dynamics functions are available for robot manipulators. You can use these
functions after specifying all the relevant dynamics properties on your rigidBodyTree
robot model.

• forwardDynamics — Compute joint accelerations given joint torques and states
• inverseDynamics — Compute required joint torques given desired motion
• externalForce — Compose external force matrix relative to base
• gravityTorque — Compute joint torques that compensate gravity
• centerOfMass — Compute center of mass position and Jacobian
• massMatrix — Compute joint-space mass matrix
• velocityProduct — Compute joint torques that cancel velocity-induced forces

See Also
generalizedInverseKinematics | inverseKinematics | rigidBodyTree

Related Examples
• “Control LBR Manipulator Motion Through Joint Torque Commands”
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”

 See Also

1-29

Occupancy Grids
In this section...
“Overview” on page 1-30
“World, Grid, and Local Coordinates” on page 1-31
“Inflation of Coordinates” on page 1-32

Overview
Occupancy grids are used to represent a robot workspace as a discrete grid. Information
about the environment can be collected from sensors in real time or be loaded from prior
knowledge. Laser range finders, bump sensors, cameras, and depth sensors are
commonly used to find obstacles in your robot’s environment.

Occupancy grids are used in robotics algorithms such as path planning (see
mobileRobotPRM or plannerRRT). They are used in mapping applications for
integrating sensor information in a discrete map, in path planning for finding collision-
free paths, and for localizing robots in a known environment (see
monteCarloLocalization or matchScans). You can create maps with different sizes
and resolutions to fit your specific application.

For 3-D occupancy maps, see occupancyMap3D.

For 2-D occupancy grids, there are two representations:

• Binary occupancy grid (see binaryOccupancyMap)
• Probability occupancy grid (see occupancyMap)

A binary occupancy grid uses true values to represent the occupied workspace
(obstacles) and false values to represent the free workspace. This grid shows where
obstacles are and whether a robot can move through that space. Use a binary occupancy
grid if memory size is a factor in your application.

A probability occupancy grid uses probability values to create a more detailed map
representation. This representation is the preferred method for using occupancy grids.
This grid is commonly referred to as simply an occupancy grid. Each cell in the occupancy
grid has a value representing the probability of the occupancy of that cell. Values close to
1 represent a high certainty that the cell contains an obstacle. Values close to 0 represent

1 Robotics System Toolbox Topics

1-30

certainty that the cell is not occupied and obstacle free. The probabilistic values can give
better fidelity of objects and improve performance of certain algorithm applications.

Binary and probability occupancy grids share several properties and algorithm details.
Grid and word coordinates apply to both types of occupancy grids. The inflation function
also applies to both grids, but each grid implements it differently. The effects of the log-
odds representation and probability saturation apply to probability occupancy grids only.

World, Grid, and Local Coordinates
When working with occupancy grids in MATLAB, you can use either world, local, or grid
coordinates.

The absolute reference frame in which the robot operates is referred to as the world
frame in the occupancy grid. Most operations are performed in the world frame, and it is
the default selection when using MATLAB functions in this toolbox. World coordinates are
used as an absolute coordinate frame with a fixed origin, and points can be specified with
any resolution. However, all locations are converted to grid locations because of data
storage and resolution limits on the map itself.

The local frame refers to the egocentric frame for a vehicle navigating the map. The
GridOriginInLocal and LocalOriginInWorld properties define the origin of the grid
in local coordinates and the relative location of the local frame in the world coordinates.
You can adjust this local frame using the move function. For an example using the local
frame as an egocentric map to emulate a vehicle moving around and sending local
obstacles, see “Create Egocentric Occupancy Maps Using Range Sensors” (Navigation
Toolbox).

Grid coordinates define the actual resolution of the occupancy grid and the finite
locations of obstacles. The origin of grid coordinates is in the top-left corner of the grid,
with the first location having an index of (1,1). However, the GridLocationInWorld
property of the occupancy grid in MATLAB defines the bottom-left corner of the grid in
world coordinates. When creating an occupancy grid object, properties such as
XWorldLimits and YWorldLimits are defined by the input width, height, and
resolution. This figure shows a visual representation of these properties and the
relation between world and grid coordinates.

 Occupancy Grids

1-31

Inflation of Coordinates
Both the binary and normal occupancy grids have an option for inflating obstacles. This
inflation is used to add a factor of safety on obstacles and create buffer zones between the
robot and obstacle in the environment. The inflate function of an occupancy grid object
converts the specified radius to the number of cells rounded up from the
resolution*radius value. Each algorithm uses this cell value separately to modify
values around obstacles.

Binary Occupancy Grid

The inflate function takes each occupied cell and directly inflates it by adding occupied
space around each point. This basic inflation example illustrates how the radius value is
used.

1 Robotics System Toolbox Topics

1-32

Inflate Obstacles in a Binary Occupancy Grid

This example shows how to create the map, set the obstacle locations and inflate it by a
radius of 1m. Extra plots on the figure help illustrate the inflation and shifting due to
conversion to grid locations.

Create binary occupancy grid. Set occupancy of position [5,5].

map = binaryOccupancyMap(10,10,5);
setOccupancy(map,[5 5], 1);

Inflate occupied spaces on map by 1m.

inflate(map,1);
show(map)

 Occupancy Grids

1-33

Plot original location, converted grid position and draw the original circle. You can see
from this plot, that the grid center is [4.9 4.9], which is shifted from the [5 5] location. A
1m circle is drawn from there and notice that any cells that touch this circle are marked
as occupied. The figure is zoomed in to the relevant area.

hold on
theta = linspace(0,2*pi);
x = 4.9+cos(theta); % x circle coordinates
y = 4.9+sin(theta); % y circle coordinates
plot(5,5,'*b','MarkerSize',10) % Original location
plot(4.9,4.9,'xr','MarkerSize',10) % Grid location center
plot(x,y,'-r','LineWidth',2); % Circle of radius 1m.
axis([3.6 6 3.6 6])
ax = gca;
ax.XTick = [3.6:0.2:6];
ax.YTick = [3.6:0.2:6];
grid on
legend('Original Location','Grid Center','Inflation')

1 Robotics System Toolbox Topics

1-34

As you can see from the above figure, even cells that barely overlap with the inflation
radius are labeled as occupied.

See Also
binaryOccupancyMap | occupancyMap | occupancyMap3D

Related Examples
• “Create Egocentric Occupancy Maps Using Range Sensors” (Navigation Toolbox)
• “Build Occupancy Map from Lidar Scans and Poses” (Navigation Toolbox)

 See Also

1-35

Probabilistic Roadmaps (PRM)
In this section...
“Tune the Number of Nodes” on page 1-36
“Tune the Connection Distance” on page 1-40
“Create or Update PRM” on page 1-43

A probabilistic roadmap (PRM) is a network graph of possible paths in a given map based
on free and occupied spaces. The mobileRobotPRM object randomly generates nodes
and creates connections between these nodes based on the PRM algorithm parameters.
Nodes are connected based on the obstacle locations specified in Map, and on the
specified ConnectionDistance. You can customize the number of nodes, NumNodes, to
fit the complexity of the map and the desire to find the most efficient path. The PRM
algorithm uses the network of connected nodes to find an obstacle-free path from a start
to an end location. To plan a path through an environment effectively, tune the NumNodes
and ConnectionDistance properties.

When creating or updating the mobileRobotPRM class, the node locations are randomly
generated, which can affect your final path between multiple iterations. This selection of
nodes occurs when you specify Map initially, change the parameters, or update is called.
To get consistent results with the same node placement, use rng to save the state of the
random number generation. See “Tune the Connection Distance” on page 1-40 for an
example using rng.

Tune the Number of Nodes
Use the NumNodes property on the mobileRobotPRM object to tune the algorithm.
NumNodes specifies the number of points, or nodes, placed on the map, which the
algorithm uses to generate a roadmap. Using the ConnectionDistance property as a
threshold for distance, the algorithm connects all points that do not have obstacles
blocking the direct path between them.

Increasing the number of nodes can increase the efficiency of the path by giving more
feasible paths. However, the increased complexity increases computation time. To get
good coverage of the map, you might need a large number of nodes. Due to the random
placement of nodes, some areas of the map may not have enough nodes to connect to the
rest of the map. In this example, you create a large and small number of nodes in a
roadmap.

1 Robotics System Toolbox Topics

1-36

Load a map file as a logical matrix, simpleMaps, and create an occupancy grid.

load exampleMaps.mat
map = binaryOccupancyMap(simpleMap,2);

Create a simple roadmap with 50 nodes.

prmSimple = mobileRobotPRM(map,50);
show(prmSimple)

Create a dense roadmap with 250 nodes.

prmComplex = mobileRobotPRM(map,250);
show(prmComplex)

 Probabilistic Roadmaps (PRM)

1-37

The additional nodes increase the complexity but yield more options to improve the path.
Given these two maps, you can calculate a path using the PRM algorithm and see the
effects.

Calculate a simple path.

startLocation = [2 1];
endLocation = [12 10];
path = findpath(prmSimple,startLocation,endLocation);
show(prmSimple)

1 Robotics System Toolbox Topics

1-38

Calculate a complex path.

path = findpath(prmComplex, startLocation, endLocation);
show(prmComplex)

 Probabilistic Roadmaps (PRM)

1-39

Increasing the nodes allows for a more direct path, but adds more computation time to
finding a feasible path. Because of the random placement of points, the path is not always
more direct or efficient. Using a small number of nodes can make paths worse than
depicted and even restrict the ability to find a complete path.

Tune the Connection Distance
Use the ConnectionDistance property on the PRM object to tune the algorithm.
ConnectionDistance is an upper threshold for points that are connected in the
roadmap. Each node is connected to all nodes within this connection distance that do not
have obstacles between them. By lowering the connection distance, you can limit the
number of connections to reduce the computation time and simplify the map. However, a

1 Robotics System Toolbox Topics

1-40

lowered distance limits the number of available paths from which to find a complete
obstacle-free path. When working with simple maps, you can use a higher connection
distance with a small number of nodes to increase efficiency. For complex maps with lots
of obstacles, a higher number of nodes with a lowered connection distance increases the
chance of finding a solution.

Load a map as a logical matrix, simpleMap, and create an occupancy grid.

load exampleMaps.mat
map = binaryOccupancyMap(simpleMap,2);

Create a roadmap with 100 nodes and calculate the path. The default
ConnectionDistance is set to inf. Save the random number generation settings using
the rng function. The saved settings enable you to reproduce the same points and see the
effect of changing ConnectionDistance.

rngState = rng;
prm = mobileRobotPRM(map,100);
startLocation = [2 1];
endLocation = [12 10];
path = findpath(prm,startLocation,endLocation);
show(prm)

 Probabilistic Roadmaps (PRM)

1-41

Reload the random number generation settings to have PRM use the same nodes. Lower
ConnectionDistance to 2 m. Show the calculated path.

rng(rngState);
prm.ConnectionDistance = 2;
path = findpath(prm,startLocation,endLocation);
show(prm)

1 Robotics System Toolbox Topics

1-42

Create or Update PRM
When using the mobileRobotPRM object and modifying properties, with each new
function call, the object triggers the roadmap points and connections to be recalculated.
Because recalculating the map can be computationally intensive, you can reuse the same
roadmap by calling findpath with different starting and ending locations.

Load the map, simpleMap, from a .mat file as a logical matrix and create an occupancy
grid.

load('exampleMaps.mat')
map = binaryOccupancyMap(simpleMap,2);

 Probabilistic Roadmaps (PRM)

1-43

Create a roadmap. Your nodes and connections might look different due to the random
placement of nodes.

prm = mobileRobotPRM(map,100);
show(prm)

Call update or change a parameter to update the nodes and connections.

update(prm)
show(prm)

1 Robotics System Toolbox Topics

1-44

The PRM algorithm recalculates the node placement and generates a new network of
nodes.

References
[1] Kavraki, L.E., P. Svestka, J.-C. Latombe, and M.H. Overmars. "Probabilistic roadmaps

for path planning in high-dimensional configuration spaces," IEEE Transactions
on Robotics and Automation. Vol. 12, No. 4, Aug 1996 pp. 566—580.

 Probabilistic Roadmaps (PRM)

1-45

See Also
findpath | mobileRobotPRM

1 Robotics System Toolbox Topics

1-46

Pure Pursuit Controller
In this section...
“Reference Coordinate System” on page 1-47
“Look Ahead Distance” on page 1-48
“Limitations” on page 1-49

Pure pursuit is a path tracking algorithm. It computes the angular velocity command that
moves the robot from its current position to reach some look-ahead point in front of the
robot. The linear velocity is assumed constant, hence you can change the linear velocity
of the robot at any point. The algorithm then moves the look-ahead point on the path
based on the current position of the robot until the last point of the path. You can think of
this as the robot constantly chasing a point in front of it. The property
LookAheadDistance decides how far the look-ahead point is placed.

The controllerPurePursuit object is not a traditional controller, but acts as a
tracking algorithm for path following purposes. Your controller is unique to a specified a
list of waypoints. The desired linear and maximum angular velocities can be specified.
These properties are determined based on the vehicle specifications. Given the pose
(position and orientation) of the vehicle as an input, the object can be used to calculate
the linear and angular velocities commands for the robot. How the robot uses these
commands is dependent on the system you are using, so consider how robots can execute
a motion given these commands. The final important property is the
LookAheadDistance, which tells the robot how far along on the path to track towards.
This property is explained in more detail in a section below.

Reference Coordinate System
It is important to understand the reference coordinate frame used by the pure pursuit
algorithm for its inputs and outputs. The figure below shows the reference coordinate
system. The input waypoints are [x y] coordinates, which are used to compute the robot
velocity commands. The robot’s pose is input as a pose and orientation (theta) list of
points as [x y theta]. The positive x and y directions are in the right and up directions
respectively (blue in figure). The theta value is the angular orientation of the robot
measured counterclockwise in radians from the x-axis (robot currently at 0 radians).

 Pure Pursuit Controller

1-47

Look Ahead Distance
The LookAheadDistance property is the main tuning property for the controller. The
look ahead distance is how far along the path the robot should look from the current
location to compute the angular velocity commands. The figure below shows the robot
and the look-ahead point. As displayed in this image, note that the actual path does not
match the direct line between waypoints.

The effect of changing this parameter can change how your robot tracks the path and
there are two major goals: regaining the path and maintaining the path. In order to
quickly regain the path between waypoints, a small LookAheadDistance will cause your
robot to move quickly towards the path. However, as can be seen in the figure below, the
robot overshoots the path and oscillates along the desired path. In order to reduce the
oscillations along the path, a larger look ahead distance can be chosen, however, it might
result in larger curvatures near the corners.

1 Robotics System Toolbox Topics

1-48

The LookAheadDistance property should be tuned for your application and robot
system. Different linear and angular velocities will affect this response as well and should
be considered for the path following controller.

Limitations
There are a few limitations to note about this pure pursuit algorithm:

• As shown above, the controller cannot exactly follow direct paths between waypoints.
Parameters must be tuned to optimize the performance and to converge to the path
over time.

• This pure pursuit algorithm does not stabilize the robot at a point. In your application,
a distance threshold for a goal location should be applied to stop the robot near the
desired goal.

References
[1] Coulter, R. Implementation of the Pure Pursuit Path Tracking Algorithm. Carnegie

Mellon University, Pittsburgh, Pennsylvania, Jan 1990.

See Also
controllerVFH | stateEstimatorPF

 See Also

1-49

Particle Filter Parameters
In this section...
“Number of Particles” on page 1-50
“Initial Particle Location” on page 1-51
“State Transition Function” on page 1-53
“Measurement Likelihood Function” on page 1-54
“Resampling Policy” on page 1-54
“State Estimation Method” on page 1-55

To use the stateEstimatorPF particle filter, you must specify parameters such as the
number of particles, the initial particle location, and the state estimation method. Also, if
you have a specific motion and sensor model, you specify these parameters in the state
transition function and measurement likelihood function, respectively. The details of these
parameters are detailed on this page. For more information on the particle filter workflow,
see “Particle Filter Workflow” on page 1-57.

Number of Particles
To specify the number of particles, use the initialize method. Each particle is a
hypothesis of the current state. The particles are distributed across your state space
based on either a specified mean and covariance, or on the specified state bounds.
Depending on the StateEstimationMethod property, either the particle with the
highest weight or the mean of all particles is taken to determine the best state estimate.

The default number of particles is 1000. Unless performance is an issue, do not use fewer
than 1000 particles. A higher number of particles can improve the estimate but sacrifices
performance speed, because the algorithm has to process more particles. Tuning the
number of particles is the best way to affect your particle filters performance.

These results, which are based on the stateEstimatorPF example, show the difference
in tracking accuracy when using 100 particles and 5000 particles.

1 Robotics System Toolbox Topics

1-50

Initial Particle Location
When you initialize your particle filter, you can specify the initial location of the particles
using:

• Mean and covariance
• State bounds

Your initial state is defined as a mean with a covariance relative to your system. This
mean and covariance correlate to the initial location and uncertainty of your system. The
stateEstimatorPF object distributes particles based on your covariance around the
given mean. The algorithm uses this distribution of particles to get the best estimation of

 Particle Filter Parameters

1-51

state, so an accurate initialization of particles helps to converge to the best state
estimation quickly.

If an initial state is unknown, you can evenly distribute your particles across a given state
bounds. The state bounds are the limits of your state. For example, when estimating the
position of a robot, the state bounds are limited to the environment that the robot can
actually inhabit. In general, an even distribution of particles is a less efficient way to
initialize particles to improve the speed of convergence.

The plot shows how the mean and covariance specification can cluster particles much
more effectively in a space rather than specifying the full state bounds.

1 Robotics System Toolbox Topics

1-52

State Transition Function
The state transition function, StateTransitionFcn, of a particle filter helps to evolve
the particles to the next state. It is used during the prediction step of the “Particle Filter
Workflow” on page 1-57. In the stateEstimatorPF object, the state transition function
is specified as a callback function that takes the previous particles, and any other
necessary parameters, and outputs the predicted location. The function header syntax is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)

By default, the state transition function assumes a Gaussian motion model with constant
velocities. The function uses a Gaussian distribution to determine the position of the
particles in the next time step.

For your application, it is important to have a state transition function that accurately
describes how you expect the system to behave. To accurately evolve all the particles, you
must develop and implement a motion model for your system. If particles are not
distributed around the next state, the stateEstimatorPF object does not find an
accurate estimate. Therefore, it is important to understand how your system can behave
so that you can track it accurately.

You also must specify system noise in StateTransitionFcn. Without random noise
applied to the predicted system, the particle filter does not function as intended.

Although you can predict many systems based on their previous state, sometimes the
system can include extra information. The use of varargin in the function enables you to
input any extra parameters that are relevant for predicting the next state. When you call
predict, you can include these parameters using:

predict(pf,param1,param2)

Because these parameters match the state transition function you defined, calling
predict essentially calls the function as:

predictParticles = stateTransitionFcn(pf,prevParticles,param1,param2)

The output particles, predictParticles, are then either used by the “Measurement
Likelihood Function” on page 1-54 to correct the particles, or used in the next prediction
step if correction is not required.

 Particle Filter Parameters

1-53

Measurement Likelihood Function
After predicting the next state, you can use measurements from sensors to correct your
predicted state. By specifying a MeasurementLikelihoodFcn in the
stateEstimatorPF object, you can correct your predicted particles using the correct
function. This measurement likelihood function, by definition, gives a weight for the state
hypotheses (your particles) based on a given measurement. Essentially, it gives you the
likelihood that the observed measurement actually matches what each particle observes.
This likelihood is used as a weight on the predicted particles to help with correcting them
and getting the best estimation. Although the prediction step can prove accurate for a
small number of intermediate steps, to get accurate tracking, use sensor observations to
correct the particles frequently.

The specification of the MeasurementLikelihoodFcn is similar to the
StateTransitionFcn. It is specified as a function handle in the properties of the
stateEstimatorPF object. The function header syntax is:

function likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,varargin)

The output is the likelihood of each predicted particle based on the measurement given.
However, you can also specify more parameters in varargin. The use of varargin in
the function enables you to input any extra parameters that are relevant for correcting
the predicted state. When you call correct, you can include these parameters using:

correct(pf,measurement,param1,param2)

These parameters match the measurement likelihood function you defined:

likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,param1,param2)

The correct function uses the likelihood output for particle resampling and giving
the final state estimate.

Resampling Policy
The resampling of particles is a vital step for continuous tracking of objects. It enables
you to select particles based on the current state, instead of using the particle
distribution given at initialization. By continuously resampling the particles around the
current estimate, you can get more accurate tracking and improve long-term
performance.

When you call correct, the particles used for state estimation can be resampled
depending on the ResamplingPolicy property specified in the stateEstimatorPF

1 Robotics System Toolbox Topics

1-54

object. This property is specified as a resamplingPolicyPFresamplingPolicyPF
object. The TriggerMethod property on that object tells the particle filter which method
to use for resampling.

You can trigger resampling at either a fixed interval or when a minimum effective particle
ratio is reached. The fixed interval method resamples at a set number of iterations, which
is specified in the SamplingInterval property. The minimum effective particle ratio is a
measure of how well the current set of particles approximates the posterior distribution.
The number of effective particles is calculated by:

N

w

eff

i

i

N
=

()
=

Â

1

2

1

In this equation, N is the number of particles, and w is the normalized weight of each
particle. The effective particle ratio is then Neff / NumParticles. Therefore, the effective
particle ratio is a function of the weights of all the particles. After the weights of the
particles reach a low enough value, they are not contributing to the state estimation. This
low value triggers resampling, so the particles are closer to the current state estimation
and have higher weights.

State Estimation Method
The final step of the particle filter workflow is the selection of a single state estimate. The
particles and their weights sampled across the distribution are used to give the best
estimation of the actual state. However, you can use the particles information to get a
single state estimate in multiple ways. With the stateEstimatorPF object, you can
either choose the best estimate based on the particle with the highest weight or take a
mean of all the particles. Specify the estimation method in the
StateEstimationMethod property as either 'mean'(default) or 'maxweight'.

Because you can estimate the state from all of the particles in many ways, you can also
extract each particle and its weight from the stateEstimatorPF using the Particles
property.

See Also
resamplingPolicyPF | stateEstimatorPF

 See Also

1-55

Related Examples
• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Workflow” on page 1-57

1 Robotics System Toolbox Topics

1-56

Particle Filter Workflow
A particle filter is a recursive, Bayesian state estimator that uses discrete particles to
approximate the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two
steps:

• Prediction – The algorithm uses the previous state to predict the current state based
on a given system model.

• Correction – The algorithm uses the current sensor measurement to correct the state
estimate.

The algorithm also periodically redistributes, or resamples, the particles in the state
space to match the posterior distribution of the estimated state.

The estimated state consists of all the state variables. Each particle represents a discrete
state hypothesis. The set of all particles is used to help determine the final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and
measurement noise can follow arbitrary non-Gaussian distributions.

To use the particle filter properly, you must specify parameters such as the number of
particles, the initial particle location, and the state estimation method. Also, if you have a
specific motion and sensor model, you specify these parameters in the state transition
function and measurement likelihood function, respectively. For more information, see
“Particle Filter Parameters” on page 1-50.

Follow this basic workflow to create and use a particle filter. This page details the
estimation workflow and shows an example of how to run a particle filter in a loop to
continuously estimate state.

Estimation Workflow
When using a particle filter, there is a required set of steps to create the particle filter and
estimate state. The prediction and correction steps are the main iteration steps for
continuously estimating state.

 Particle Filter Workflow

1-57

1 Robotics System Toolbox Topics

1-58

Create Particle Filter

Create a stateEstimatorPF object.

Set Parameters of Nonlinear System

Modify these stateEstimatorPF parameters to fit for your specific system or
application:

• StateTransitionFcn
• MeasurementLikelihoodFcn
• ResamplingPolicy
• ResamplingMethod
• StateEstimationMethod

Default values for these parameters are given for basic operation.

The StateTransitionFcn and MeasurementLikelihoodFcn functions define the
system behavior and measurement integration. They are vital for the particle filter to
track accurately. For more information, see “Particle Filter Parameters” on page 1-50.

Initialize Particles

Use the initialize function to set the number of particles and the initial state.

Sample Particles from a Distribution

You can sample the initial particle locations in two ways:

• Initial pose and covariance — If you have an idea of your initial state, it is
recommended you specify the initial pose and covariance. This specification helps to
cluster particles closer to your estimate so tracking is more effective from the start.

• State bounds — If you do not know your initial state, you can specify the possible
limits of each state variable. Particles are uniformly distributed across the state
bounds for each variable. Widely distributed particles are not as effective at tracking,
because fewer particles are near the actual state. Using state bounds usually requires
more particles, computation time, and iterations to converge to the actual state
estimate.

 Particle Filter Workflow

1-59

Predict

Based on a specified state transition function, particles evolve to estimate the next state.
Use predict to execute the state transition function specified in the
StateTransitionFcn property.

Get Measurement

The measurements collected from sensors are used in the next step to correct the current
predicted state.

Correct

Measurements are then used to adjust the predicted state and correct the estimate.
Specify your measurements using the correct function. correct uses the
MeasurementLikelihoodFcn to calculate the likelihood of sensor measurements for
each particle. Resampling of particles is required to update your estimation as the state
changes in subsequent iterations. This step triggers resampling based on the
ResamplingMethod and ResamplingPolicy properties.

Extract Best State Estimation

After calling correct, the best state estimate is automatically extracted based on the
Weights of each particle and the StateEstimationMethod property specified in the
object. The best estimated state and covariance is output by the correct function.

Resample Particles

This step is not separately called, but is executed when you call correct. Once your
state has changed enough, resample your particles based on the newest estimate. The
correct method checks the ResamplingPolicy for the triggering of particle
resampling according to the current distribution of particles and their weights. If
resampling is not triggered, the same particles are used for the next estimation. If your
state does not vary by much or if your time step is low, you can call the predict and
correct methods without resampling.

Continuously Predict and Correct

Repeat the previous prediction and correction steps as needed for estimating state. The
correction step determines if resampling of the particles is required. Multiple calls for
predict or correct might be required when:

1 Robotics System Toolbox Topics

1-60

• No measurement is available but control inputs and time updates are occur at a high
frequency. Use the predict method to evolve the particles to get the updated
predicted state more often.

• Multiple measurement reading are available. Use correct to integrate multiple
readings from the same or multiple sensors. The function corrects the state based on
each set of information collected.

See Also
correct | getStateEstimate | initialize | predict | stateEstimatorPF

Related Examples
• “Track a Car-Like Robot Using Particle Filter”
• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Parameters” on page 1-50

 See Also

1-61

Standard Units for Robotics System Toolbox
Robotics System Toolbox uses a fixed set of standards for units to ensure consistency
across algorithms and applications. Unless specified otherwise, functions and classes in
this toolbox represent all values in units based on the International System of Units (SI).
The table below summarizes the relevant quantities and their SI derived units.

Quantity Unit (abbrev.)
Length meter (m)
Time second (s)
Angle radian (rad)
Velocity meter/second (m/s)
Angular Velocity radian/second (rad/s)
Acceleration meter/second2 (m/s2)
Angular Acceleration radian/second2 (rad/s2)
Mass kilogram (kg)
Force Newton (N)
Torque Newton-meter (N-m)
Moment of Inertia kilogram-meter2 (kg-m2)

See Also

More About
• “Coordinate Transformations in Robotics” on page 1-63

1 Robotics System Toolbox Topics

1-62

Coordinate Transformations in Robotics
In this section...
“Axis-Angle” on page 1-63
“Euler Angles” on page 1-64
“Homogeneous Transformation Matrix” on page 1-64
“Quaternion” on page 1-65
“Rotation Matrix” on page 1-65
“Translation Vector” on page 1-66
“Conversion Functions and Transformations” on page 1-66

In robotics applications, many different coordinate systems can be used to define where
robots, sensors, and other objects are located. In general, the location of an object in 3-D
space can be specified by position and orientation values. There are multiple possible
representations for these values, some of which are specific to certain applications.
Translation and rotation are alternative terms for position and orientation. Robotics
System Toolbox supports representations that are commonly used in robotics and allows
you to convert between them. You can transform between coordinate systems when you
apply these representations to 3-D points. These supported representations are detailed
below with brief explanations of their usage and numeric equivalent in MATLAB. Each
representation has an abbreviation for its name. This is used in the naming of arguments
and conversion functions that are supported in this toolbox.

At the end of this section, you can find out about the conversion functions that we offer to
convert between these representations.

Robotics System Toolbox assumes that positions and orientations are defined in a right-
handed Cartesian coordinate system.

Axis-Angle
Abbreviation: axang

A rotation in 3-D space described by a scalar rotation around a fixed axis defined by a
vector.

Numeric Representation: 1-by-3 unit vector and a scalar angle combined as a 1-by-4
vector

 Coordinate Transformations in Robotics

1-63

For example, a rotation of pi/2 radians around the y-axis would be:

axang = [0 1 0 pi/2]

Euler Angles
Abbreviation: eul

Euler angles are three angles that describe the orientation of a rigid body. Each angle is a
scalar rotation around a given coordinate frame axis. The Robotics System Toolbox
supports two rotation orders. The 'ZYZ' axis order is commonly used for robotics
applications. We also support the 'ZYX' axis order which is also denoted as “Roll Pitch
Yaw (rpy).” Knowing which axis order you use is important for apply the rotation to points
and in converting to other representations.

Numeric Representation: 1-by-3 vector of scalar angles

For example, a rotation around the y -axis of pi would be expressed as:

eul = [0 pi 0]

Note: The axis order is not stored in the transformation, so you must be aware of what
rotation order is to be applied.

Homogeneous Transformation Matrix
Abbreviation: tform

A homogeneous transformation matrix combines a translation and rotation into one
matrix.

Numeric Representation: 4-by-4 matrix

For example, a rotation of angle α around the y -axis and a translation of 4 units along the
y -axis would be expressed as:

tform =
 cos α 0 sin α 0
 0 1 0 4
-sin α 0 cos α 0
 0 0 0 1

1 Robotics System Toolbox Topics

1-64

You should pre-multiply your transformation matrix with your homogeneous coordinates,
which are represented as a matrix of row vectors (n-by-4 matrix of points). Utilize the
transpose (') to rotate your points for matrix multiplication. For example:

points = rand(100,4);
tformPoints = (tform*points')';

Quaternion
Abbreviation: quat

A quaternion is a four-element vector with a scalar rotation and 3-element vector.
Quaternions are advantageous because they avoid singularity issues that are inherent in
other representations. The first element, w, is a scalar to normalize the vector with the
three other values, [x y z] defining the axis of rotation.

Numeric Representation: 1-by-4 vector

For example, a rotation of pi/2 around the y -axis would be expressed as:

quat = [0.7071 0 0.7071 0]

Rotation Matrix
Abbreviation: rotm

A rotation matrix describes a rotation in 3-D space. It is a square, orthonormal matrix
with a determinant of 1.

Numeric Representation: 3-by-3 matrix

For example, a rotation of α degrees around the x-axis would be:

rotm =

 1 0 0
 0 cos α -sin α
 0 sin α cos α

You should pre-multiply your rotation matrix with your coordinates, which are
represented as a matrix of row vectors (n-by-3 matrix of points). Utilize the transpose (')
to rotate your points for matrix multiplication. For example:

 Coordinate Transformations in Robotics

1-65

points = rand(100,3);
rotPoints = (rotm*points')';

Translation Vector
Abbreviation: trvec

A translation vector is represented in 3-D Euclidean space as Cartesian coordinates. It
only involves coordinate translation applied equally to all points. There is no rotation
involved.

Numeric Representation: 1-by-3 vector

For example, a translation by 3 units along the x -axis and 2.5 units along the z -axis
would be expressed as:

trvec = [3 0 2.5]

Conversion Functions and Transformations
Robotics System Toolbox provides conversion functions for the previously mentioned
transformation representations. Not all conversions are supported by a dedicated
function. Below is a table showing which conversions are supported (in blue). The
abbreviations for the rotation and translation representations are shown as well.

The names of all the conversion functions follow a standard format. They follow the form
alpha2beta where alpha is the abbreviation for what you are converting from and beta

1 Robotics System Toolbox Topics

1-66

is what you are converting to as an abbreviation. For example, converting from Euler
angles to quaternion would be eul2quat.

All the functions expect valid inputs. If you specify invalid inputs, the outputs will be
undefined.

There are other conversion functions for converting between radians and degrees,
Cartesian and homogeneous coordinates, and for calculating wrapped angle differences.
For a full list of conversions, see “Coordinate Transformations and Trajectories” .

See Also

More About
• “Standard Units for Robotics System Toolbox” on page 1-62

 See Also

1-67

Execute Code at a Fixed-Rate
In this section...
“Introduction” on page 1-68
“Run Loop at Fixed Rate” on page 1-68
“Overrun Actions for Fixed Rate Execution” on page 1-69

Introduction
By executing code at constant intervals, you can accurately time and schedule tasks.
Using a rateControl object allows you to control the rate of your code execution. These
examples show different applications for the rateControl object including its uses with
ROS and sending commands for robot control.

Run Loop at Fixed Rate
Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the
object prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
 time = r.TotalElapsedTime;
 fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
 waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.008895
Iteration: 2 - Time Elapsed: 1.005288
Iteration: 3 - Time Elapsed: 2.006203
Iteration: 4 - Time Elapsed: 3.010300
Iteration: 5 - Time Elapsed: 4.005049
Iteration: 6 - Time Elapsed: 5.004715
Iteration: 7 - Time Elapsed: 6.003483
Iteration: 8 - Time Elapsed: 7.003705
Iteration: 9 - Time Elapsed: 8.004860
Iteration: 10 - Time Elapsed: 9.003329

1 Robotics System Toolbox Topics

1-68

Each iteration executes at a 1-second interval.

Overrun Actions for Fixed Rate Execution
The rateControl object uses the OverrunAction property to decide how to handle
code that takes longer than the desired period to operate. The options are 'slip'
(default) or 'drop'. This example shows how the OverrunAction affects code
execution.

Setup desired rate and loop time. slowFrames is an array of times when the loop should
be stalled longer than the desired rate.

desiredRate = 1;
loopTime = 20;
slowFrames = [3 7 12 18];

Create the Rate object and specify the OverrunAction property. 'slip' indicates that
the waitfor function will return immediately if the time for LastPeriod is greater than
the DesiredRate property.

rate = rateControl(desiredRate);
rate.OverrunAction = 'slip';

Reset Rate object and begin loop. This loop will execute at the desired rate until the loop
time is reached. When the TotalElapsedTime reaches a slow frame time, it will stall for
longer than the desired period.

reset(rate);

while rate.TotalElapsedTime < loopTime
 if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
 pause(desiredRate + 0.1)
 end
 waitfor(rate);
end

View statistics on the Rate object. Notice the number of periods.

stats = statistics(rate)

stats = struct with fields:
 Periods: [1x20 double]
 NumPeriods: 20

 Execute Code at a Fixed-Rate

1-69

 AveragePeriod: 1.0208
 StandardDeviation: 0.0431
 NumOverruns: 4

Change the OverrunAction to 'drop'. 'drop' indicates that the waitfor function will
return at the next time step, even if the LastPeriod is greater than the DesiredRate
property. This effectively drops the iteration that was missed by the slower code
execution.

rate.OverrunAction = 'drop';

Reset Rate object and begin loop.

reset(rate);

while rate.TotalElapsedTime < loopTime
 if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
 pause(1.1)
 end
 waitfor(rate);
end
stats2 = statistics(rate)

stats2 = struct with fields:
 Periods: [1x16 double]
 NumPeriods: 16
 AveragePeriod: 1.2501
 StandardDeviation: 0.4481
 NumOverruns: 4

Using the 'drop' over run action resulted in 16 periods when the 'slip' resulted in 20
periods. This difference is because the 'slip' did not wait until the next interval based
on the desired rate. Essentially, using 'slip' tries to keep the AveragePeriod property
as close to the desired rate. Using 'drop' ensures the code will execute at an even
interval relative to DesiredRate with some iterations being skipped.

See Also
rateControl | rosrate | waitfor

1 Robotics System Toolbox Topics

1-70

Accelerate Robotics Algorithms with Code Generation
In this section...
“Create Separate Function for Algorithm” on page 1-71
“Perform Code Generation for Algorithm” on page 1-72
“Check Performance of Generated Code” on page 1-72
“Replace Algorithm Function with MEX Function” on page 1-73

You can generate code for select Robotics System Toolbox algorithms to speed up their
execution. Set up the algorithm that supports code generation as a separate function that
you can insert into your workflow. To use code generation, you must have a MATLAB
Coder™ license. For a summary of code generation support in Robotics System Toolbox,
see “Code Generation”.

For this example, use a inverseKinematics object with a rigidBodyTree robot model
to solve for robot configurations that achieve a desired end-effector position.

Create Separate Function for Algorithm
Create a separate function, vfhCodeGen, that runs the inverse kinematics algorithm.
Create inverseKinematics object and build the rigidBodyTree model inside the
function. Specify %#codegen inside the function to identify it as a function for code
generation.

function qConfig = ikCodegen(endEffectorName,tform,weights,initialGuess)
 %#codegen

 robot = rigidBodyTree('MaxNumBodies',3,'DataFormat','row');
 body1 = rigidBody('body1');
 body1.Joint = rigidBodyJoint('jnt1','revolute');

 body2 = rigidBody('body2');
 jnt2 = rigidBodyJoint('jnt2','revolute');
 setFixedTransform(jnt2,trvec2tform([1 0 0]))
 body2.Joint = jnt2;

 body3 = rigidBody('tool');
 jnt3 = rigidBodyJoint('jnt3','revolute');
 setFixedTransform(jnt3,trvec2tform([1 0 0]))
 body3.Joint = jnt3;

 Accelerate Robotics Algorithms with Code Generation

1-71

 addBody(robot,body1,'base')
 addBody(robot,body2,'body1')
 addBody(robot,body3,'body2')

 ik = inverseKinematics('RigidBodyTree',robot);

 [qConfig,~] = ik(endEffectorName,tform,weights,initialGuess);
end

Save the function in your current folder.

Perform Code Generation for Algorithm
You can use either the codegen function or the MATLAB Coder app to generate code. In
this example, generate a MEX file by calling codegen on the MATLAB command line.
Specify sample input arguments for each input to the function using the -args input
argument

Specify sample values for the input arguments.

endEffectorName = 'tool';
tform = trvec2tform([0.7 -0.7 0]);
weights = [0.25 0.25 0.25 1 1 1];
initialGuess = [0 0 0];

Call the codegen function and specify the input arguments in a cell array. This function
creates a separate vfhCodeGen_mex function to use. You can also produce C code by
using the options input argument.

codegen ikCodegen -args {endEffectorName,tform,weights,initialGuess}

If your input can come from variable-size lengths, specify the canonical type of the inputs
by using coder.typeof with the codegen function.

Check Performance of Generated Code
Compare the timing of the generated MEX function to the timing of your original function
by using timeit.

time = timeit(@() ikCodegen(rbt,endEffectorName,tform,weights,initialGuess))
mexTime = timeit(@() ikCodegen_mex(rbt,endEffectorName,tform,weights,initialGuess))

1 Robotics System Toolbox Topics

1-72

time =

 0.0425

mexTime =

 0.0011

The MEX function runs over 30 times faster in this example. Results might vary in your
system.

Replace Algorithm Function with MEX Function
Open the main function for running your robotics workflow. Replace the ik object call
with the MEX function that you created using code generation. For this example, use the
simple 2-D path tracing example.

Open the “2-D Path Tracing With Inverse Kinematics” on page 1-18 example.

openExample('robotics/TwoDInverseKinematicsExampleExample')

Modify the example code to use the new ikCodeGen_mex function. The code that follows
is a copy of the example with modifications to use of the new MEX function. Defining the
robot model is done inside the function, so skip the Construct the Robot section.

Define The Trajectory

t = (0:0.2:10)'; % Time
count = length(t);
center = [0.3 0.1 0];
radius = 0.15;
theta = t*(2*pi/t(end));
points = center + radius*[cos(theta) sin(theta) zeros(size(theta))];

Inverse Kinematics Solution

Pre-allocate configuration solutions as a matrix, qs. Specify the weights for the end-
effector transformation and the end-effector name.

q0 = [0 0 0];
ndof = length(q0);
qs = zeros(count, ndof);

 Accelerate Robotics Algorithms with Code Generation

1-73

weights = [0, 0, 0, 1, 1, 0];
endEffector = 'tool';

Loop through the trajectory of points to trace the circle. Replace the ik object call with
the ikCodegen_mex function. Calculate the solution for each point to generate the joint
configuration that achieves the end-effector position. Store the configurations to use later.

qInitial = q0; % Use home configuration as the initial guess
for i = 1:count
 % Solve for the configuration satisfying the desired end effector
 % position
 point = points(i,:);
 qSol = ikCodegen_mex(endEffector,trvec2tform(point),weights,qInitial);
 % Store the configuration
 qs(i,:) = qSol;
 % Start from prior solution
 qInitial = qSol;
end

Animate Solution

Now that all the solutions have been generated. Animate the results. You must recreate
the robot because it was originally defined inside the function. Iterate through all the
solutions.

robot = rigidBodyTree('MaxNumBodies',15,'DataFormat','row');
body1 = rigidBody('body1');
body1.Joint = rigidBodyJoint('jnt1','revolute');

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
setFixedTransform(jnt2,trvec2tform([0.3 0 0]))
body2.Joint = jnt2;

body3 = rigidBody('tool');
jnt3 = rigidBodyJoint('jnt3','revolute');
setFixedTransform(jnt3,trvec2tform([0.3 0 0]))
body3.Joint = jnt3;

addBody(robot,body1,'base')
addBody(robot,body2,'body1')
addBody(robot,body3,'body2')

% Show first solution and set view.
figure

1 Robotics System Toolbox Topics

1-74

show(robot,qs(1,:));
view(2)
ax = gca;
ax.Projection = 'orthographic';
hold on
plot(points(:,1),points(:,2),'k')
axis([-0.1 0.7 -0.3 0.5])

% Iterate through the solutions
framesPerSecond = 15;
r = rateControl(framesPerSecond);
for i = 1:count
 show(robot,qs(i,:),'PreservePlot',false);
 drawnow
 waitfor(r);
end

This example showed you how can you generate code for specific algorithms or functions
to improve their speed and simply replace them with the generated MEX function in your
workflow.

See Also
codegen | inverseKinematics | timeit

Related Examples
• “2-D Path Tracing With Inverse Kinematics” on page 1-18
• “Code Generation Support” on page 1-79
• “Generate C Code at the Command Line” (MATLAB Coder)
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)

 See Also

1-75

Install Robotics System Toolbox Add-ons
To expand the capabilities of the Robotics System Toolbox and gain additional
functionality for specific tasks and applications, use add-ons. You can find and install add-
ons using the Add-On Explorer.

1 To install add-ons relevant to the Robotics System Toolbox, type in the MATLAB
command window:

roboticsAddons
2 Select the add-on that you want. For example:

• Robotics System Toolbox UAV Library
3 Click Install, and select either:

• Install
• Download Only... — Downloads an install file to use offline.

4 Continue to follow the setup instructions on the Add-Ons Explorer to install your
add-ons.

To update or manage your add-ons, call roboticsAddons and select Manage Add-Ons.

See Also

Related Examples
• “Add-Ons” (MATLAB)

1 Robotics System Toolbox Topics

1-76

Code Generation from MATLAB Code
Several Robotics System Toolbox functions are enabled to generate C/C++ code. Code
generation from MATLAB code requires the MATLAB Coder product. To generate code
from robotics functions, follow these steps:

• Write your function or application that uses Robotics System Toolbox functions that
are enabled for code generation. For code generation, some of these functions have
requirements that you must follow. See “Code Generation Support” on page 1-79.

• Add the %#codegen directive to your MATLAB code.
• Follow the workflow for code generation from MATLAB code using either the MATLAB

Coder app or the command-line interface.

Using the app, the basic workflow is:

1 Set up a project. Specify your top-level functions and define input types.

The app screens your code for code generation readiness. It reports issues such as a
function that is not supported for code generation.

2 Check for run-time issues.

The app generates and runs a MEX version of your function. This step detects issues
that can be hard to detect in the generated C/C++ code.

3 Configure the code generation settings for your application.
4 Generate C/C++ code.
5 Verify the generated C/C++ code. If you have an Embedded Coder® license, you can

use software-in-the-loop execution (SIL) or processor-in-the-loop (PIL) execution.

For a tutorial, see “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder).

Using the command-line interface, the basic workflow is:

• To detect issues and verify the behavior of the generated code, generate a MEX
version of your function.

• Use coder.config to create a code configuration object for a library or executable.
• Modify the code configuration object properties as required for your application.
• Generate code using the codegen command.
• Verify the generated code. If you have an Embedded Coder license, you can use

software-in-the-loop execution (SIL) or processor-in-the-loop (PIL) execution.

 Code Generation from MATLAB Code

1-77

For a tutorial, see “Generate C Code at the Command Line” (MATLAB Coder).

See Also

More About
• “Code Generation Support” on page 1-79

1 Robotics System Toolbox Topics

1-78

Code Generation Support
To generate code from MATLAB code that contains Robotics System Toolbox functions,
classes, or System objects, you must have the MATLAB Coder software.

The following functions support code generation using MATLAB Coder, but may have
some limitations.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

ackermannKinemati
cs

Create car-like steering vehicle model

angdiff Difference between two angles
axang2quat Convert axis-angle rotation to quaternion
axang2rotm Convert axis-angle rotation to rotation matrix
axang2tform Convert axis-angle rotation to homogeneous transformation
bicycleKinematics Create bicycle vehicle model
binaryOccupancyMa
p

Create occupancy grid with binary values

bsplinepolytraj Generate polynomial trajectories using B-splines
cart2hom Convert Cartesian coordinates to homogeneous coordinates
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
constraintAiming Create aiming constraint for pointing at a target location
constraintCartesi
anBounds

Create constraint to keep body origin inside Cartesian bounds

constraintJointBo
unds

Create constraint on joint positions of robot model

constraintOrienta
tionTarget

Create constraint on relative orientation of body

 Code Generation Support

1-79

constraintPoseTar
get

Create constraint on relative pose of body

constraintPositio
nTarget

Create constraint on relative position of body

control Control commands for UAV
controllerPurePur
suit

Create controller to follow set of waypoints

ctranspose, ' Complex conjugate transpose of quaternion array
cubicpolytraj Generate third-order polynomial trajectories
derivative Time derivative of UAV states
differentialDrive
Kinematics

Create differential-drive vehicle model

dist Angular distance in radians
environment Environmental inputs for UAV
eul2quat Convert Euler angles to quaternion
eul2rotm Convert Euler angles to rotation matrix
eul2tform Convert Euler angles to homogeneous transformation
euler Convert quaternion to Euler angles (radians)
eulerd Convert quaternion to Euler angles (degrees)
exp Exponential of quaternion array
fixedwing Guidance model for fixed-wing UAVs
generalizedInvers
eKinematics*

Create multiconstraint inverse kinematics solver

hom2cart Convert homogeneous coordinates to Cartesian coordinates
inverseKinematics
*

Create inverse kinematic solver

jointSpaceMotionM
odel

Model rigid body tree motion given joint-space inputs

ldivide, .\ Element-wise quaternion left division
lidarScan Create object for storing 2-D lidar scan
log Natural logarithm of quaternion array

1 Robotics System Toolbox Topics

1-80

meanrot Quaternion mean rotation
minus, - Quaternion subtraction
mobileRobotPRM* Create probabilistic roadmap path planner
mtimes, * Quaternion multiplication
multirotor Guidance model for multirotor UAVs
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts set

to zero
parts Extract quaternion parts
power, .^ Element-wise quaternion power
prod Product of a quaternion array
quat2axang Convert quaternion to axis-angle rotation
quat2eul Convert quaternion to Euler angles
quat2rotm Convert quaternion to rotation matrix
quat2tform Convert quaternion to homogeneous transformation
quaternion Create a quaternion array
quinticpolytraj Generate fifth-order trajectories
randrot Uniformly distributed random rotations
rdivide, ./ Element-wise quaternion right division
rigidBody Create a rigid body
rigidBodyJoint Create a joint
rigidBodyTree* Create tree-structured robot
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotm2axang Convert rotation matrix to axis-angle rotation
rotm2eul Convert rotation matrix to Euler angles
rotm2quat Convert rotation matrix to quaternion
rotm2tform Convert rotation matrix to homogeneous transformation

 Code Generation Support

1-81

rotmat Convert quaternion to rotation matrix
rottraj Generate trajectories between orientation rotation matrices
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
state UAV state vector
stateEstimatorPF Create particle filter state estimator
taskSpaceMotionMo
del

Model rigid body tree motion given task-space reference inputs

tform2axang Convert homogeneous transformation to axis-angle rotation
tform2eul Extract Euler angles from homogeneous transformation
tform2quat Extract quaternion from homogeneous transformation
tform2rotm Extract rotation matrix from homogeneous transformation
tform2trvec Extract translation vector from homogeneous transformation
times, .* Element-wise quaternion multiplication
transformScan Transform laser scan based on relative pose
transformtraj Generate trajectories between two transformations
transpose, .' Transpose a quaternion array
trapveltraj Generate trajectories with trapezoidal velocity profiles
trvec2tform Convert translation vector to homogeneous transformation
uavOrbitFollower Orbit location of interest using a UAV
uavWaypointFollow
er

Follow waypoints for UAV

uminus, - Quaternion unary minus
unicycleKinematic
s

Create unicycle vehicle model

zeros Create quaternion array with all parts set to zero

1 Robotics System Toolbox Topics

1-82

See Also

More About
• “Code Generation from MATLAB Code” on page 1-77

 See Also

1-83

Examples for Simulink Blocks

2

Convert Coordinate System Transformations
This model shows how to convert some basic coordinate system transformations into
other coordinate systems. Input vectors are expected to be vertical vectors.

open_system('coord_trans_block_example_model.slx')

2 Examples for Simulink Blocks

2-2

Compute Geometric Jacobian for Manipulators in
Simulink

This example shows how to calculate the geometric Jacobian for a robot manipulator by
using a rigidBodyTree model. The Jacobian maps the joint-space velocity to the end-
effector velocity relative to the base coordinate frame. In this example, you define a robot
model and robot configurations in MATLAB® and pass them to Simulink® to be used with
the manipulator algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the
homeConfiguration function to get the home configuration or home joint positions of
the robot. Use the randomConfiguration function to generate a random configuration
within the specified joint limits.

load('exampleRobots.mat','lbr')
lbr.DataFormat = 'column';
homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and the configuration vectors. The 'tool0' body is selected as the end-
effector in both blocks.

open_system('get_jacobian_example.slx')

 Compute Geometric Jacobian for Manipulators in Simulink

2-3

Run the model to display the Jacobian for each configuration.

See Also
Blocks
Forward Dynamics | Get Jacobian | Gravity Torque | Inverse Dynamics | Joint Space Mass
Matrix

Classes
RigidBodyTree

Functions
externalForce | homeConfiguration | importrobot | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

2 Examples for Simulink Blocks

2-4

Get Transformations for Manipulator Bodies in Simulink
This example shows how to get the transformation between bodies in a rigidBodyTree
robot model. In this example, you define a robot model and robot configuration in
MATLAB® and pass them to Simulink® to be used with the manipulator algorithm block.

Load the robot model of the KUKA LBR robot as a RigidBodyTree object. Use the
homeConfiguration function to get the home configuration as joint positions of the
robot.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and configuration vectors.

The Get Transform block calculates the transformation from the source body to the target
body. This transformation converts coordinates from the source body frame to the given
target body frame. This example gives you transformations to convert coordinates from
the 'iiwa_link_ee' end effector into the 'world' base coordinates.

open_system('get_transform_example.slx')

 Get Transformations for Manipulator Bodies in Simulink

2-5

Run the model to get the transformations.

See Also
Blocks
Forward Dynamics | Get Jacobian | Get Transform | Gravity Torque | Inverse Dynamics |
Joint Space Mass Matrix

Classes
RigidBodyTree

Functions
homeConfiguration | importrobot | randomConfiguration

2 Examples for Simulink Blocks

2-6

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

 See Also

2-7

Calculate Manipulator Gravity Dynamics in Simulink
This example shows how to use the manipulator algorithm blocks to compute and
compare dynamics due to gravity for a manipulator robot.

Specify two similar robot models with different gravity accelerations. Load the KUKA LBR
robot model into the MATLAB® workspace and create a copy of it. For the first robot
model, lbr, specify a normal gravity vector, [0 0 -9.81]. For the copy, lbr2, use the
default gravity vector, [0 0 0]. These robot models are also specified in the Rigid body
tree parameters of the blocks in the model.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';
lbr2 = copy(lbr);
lbr.Gravity = [0 0 -9.81];

Open the gravity dynamics model. If needed, reload the robot models specified by the
MATLAB code using the Load Robot Models callback button.

open_system('gravity_dynamics_model.slx')

The Forward Dynamics block calculates the joint accelerations due to gravity for a given
lbr robot configuration with no initial velocity, torque, or external force. The Inverse
Dynamics block then computes the torques needed for the joint to create those same
accelerations with no gravity by using the lbr2 robot. Finally, the Gravity Torque block
calculates the torque required to counteract gravity for the lbr robot.

2 Examples for Simulink Blocks

2-8

Run the model. Besides some small numerical differences, the gravity torque and the
torque required for accelerations due to gravity are the same value with opposite
directions.

See Also
Blocks
Forward Dynamics | Get Jacobian | Gravity Torque | Inverse Dynamics | Joint Space Mass
Matrix | Velocity Product Torque

Classes
RigidBodyTree

Functions
externalForce | homeConfiguration | importrobot | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

 See Also

2-9

Trace An End-Effector Trajectory with Inverse Kinematics
in Simulink

Use a rigid body robot model to compute inverse kinematics using Simulink®. Define a
trajectory for the robot end effector and loop through the points to solve robot
configurations that trace this trajectory.

Import a robot model from a URDF (unified robot description format) file as a
RigidBodyTree object.

robot = importrobot('iiwa14.urdf');
robot.DataFormat = 'column';

View the robot.

ax = show(robot);

2 Examples for Simulink Blocks

2-10

Specify a robot trajectory. These xyz-coordinates draw an N-shape in front of the robot.

x = 0.5*zeros(1,4)+0.25;
y = 0.25*[-1 -1 1 1];
z = 0.25*[-1 1 -1 1] + 0.75;

hold on
plot3(x,y,z,'--r','LineWidth',2,'Parent',ax)
hold off

 Trace An End-Effector Trajectory with Inverse Kinematics in Simulink

2-11

Open a model that performs inverse kinematics. The xyz-coordinates defined in
MATLAB® are converted to homogeneous transformations and input as the desired Pose.
The output inverse-kinematic solution is fed back as the initial guess for the next solution.
This initial guess helps track the end-effector pose and generate smooth configurations.

You can press the callback button to regenerate the robot model and trajectory you just
defined.

close
open_system('sm_ik_trajectory_model.slx')

2 Examples for Simulink Blocks

2-12

% Run the simulation. The model should generate the robot configurations (configs)
that follow the specified trajectory for the end effector.

sim('sm_ik_trajectory_model.slx')

Loop through the robot configurations and display the robot for each time step. Store the
end-effector positions in xyz.

figure('Visible','on');
tformIndex = 1;
for i = 1:10:numel(configs.Data)/7
 currConfig = configs.Data(:,1,i);
 show(robot,currConfig);
 drawnow

 xyz(tformIndex,:) = tform2trvec(getTransform(robot,currConfig,'iiwa_link_ee'));
 tformIndex = tformIndex + 1;
end

 Trace An End-Effector Trajectory with Inverse Kinematics in Simulink

2-13

Draw the final trajectory of the end effector as a black line. The figure shows the end
effector tracing the N-shape originally defined (red dotted line).

figure('Visible','on')
show(robot,configs.Data(:,1,end));

hold on
plot3(xyz(:,1),xyz(:,2),xyz(:,3),'-k','LineWidth',3);
plot3(x,y,z,'--r','LineWidth',3)
hold off

2 Examples for Simulink Blocks

2-14

See Also
Objects
generalizedInverseKinematics | inverseKinematics | rigidBodyTree

Blocks
Get Transform | Inverse Dynamics | Inverse Kinematics

Related Examples
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”

 See Also

2-15

• “Inverse Kinematics Algorithms” on page 1-13

2 Examples for Simulink Blocks

2-16

Get Mass Matrix for Manipulators in Simulink
This example shows how to calculate the mass matrix for a robot manipulator using a
rigidBodyTree model. In this example, you define a robot model and robot
configurations in MATLAB® and pass them to Simulink® to be used with the manipulator
algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the
homeConfiguration functions to get the home configuration or home joint positions of
the robot. Use the randomConfiguration function to generate a random configuration
within the robot joint limits.

load('exampleRobots.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and configuration vectors.

The Joint Space Mass Matrix block calculates the mass matrix for the given configuration.

open_system('mass_matrix_example.slx')

 Get Mass Matrix for Manipulators in Simulink

2-17

Run the model to display the mass matrices for each configuration.

See Also
Blocks
Forward Dynamics | Get Jacobian | Get Transform | Gravity Torque | Inverse Dynamics

Classes
RigidBodyTree

Functions
homeConfiguration | importrobot | randomConfiguration

2 Examples for Simulink Blocks

2-18

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

 See Also

2-19

Generate Heading and Yaw Commands for Orbit
Following in Simulink®

This example shows how to use the UAV Orbit Follower block to generate heading and
yaw commands for orbiting a location of interest with a UAV.

NOTE: This example requires you to install the UAV Library for Robotics System
Toolbox®. Call roboticsAddons to open the Add-ons Explorer and install the library.

Open the model. Click Open Live Script to get a copy of the Simulink® model.

This model illustrates the inputs and the outputs of the block. You must specify the
current UAV pose as an [x;y;z;heading]. Also, give the orbit center location, orbit
radius, turn direction, and lookahead distance on the path. The lookahead distance is
important for tuning the path tracking.

open_system("uav_orbit_follower_ex1.slx")

Run the model to get the desired heading and yaw for following the orbit. These outputs
can be used to generate commands for a UAV.

2 Examples for Simulink Blocks

2-20

 Generate Heading and Yaw Commands for Orbit Following in Simulink®

2-21

Generate Cubic Polynomial Trajectory
This example shows how to generate a cubic polynomial trajectory using the Polynomial
Trajectory block.

Open the model. The block has a set of 2-D waypoints defined in the block mask. The
Time input is just a ramp signal to simulate time progressing.

open_system('cubic_polytraj_ex1.slx')

Run the simulation. The first figure shows the output of the q vector for the positions of
the trajectory. Notice the cubic polynomial shape to the trajectory between waypoints.
The XY Plot shows the actual 2-D trajectory, which hits the waypoints specified in the
block mask.

2 Examples for Simulink Blocks

2-22

 Generate Cubic Polynomial Trajectory

2-23

2 Examples for Simulink Blocks

2-24

Generate B-Spline Trajectory
This example shows how to generate a B-spline trajectory using the Polynomial
Trajectory block.

Open the model. The Waypoints and TimeInterval inputs are toggled in the block mask
by setting Waypoint source to External. For B-splines, the waypoints are actually
control points for the convex polygon, but the first and last waypoints are met. The Time
input is just a ramp signal to simulate time progressing.

open_system('bspline_polytraj_ex1.slx')

Run the simulation. The first figure shows the output of the q vector for the positions of
the trajectory. The X Y Plot shows the actual 2-D trajectory, which stays inside the
defined control points and hits the first and last waypoints.

 Generate B-Spline Trajectory

2-25

2 Examples for Simulink Blocks

2-26

 Generate B-Spline Trajectory

2-27

Generate Rotation Trajectory
This example shows how to generate a trajectory that interpolates between rotations
using the Rotation Trajectory block.

Open and simulate the model. The Rotation Trajectory block outputs the trajectory
between two rotations and saves the intermediate rotations to the rotations variable.
This example generates a simple rotation trajectory from the x-axis to the z-axis.

open_system('rot_traj_ex1.slx')
simOut = sim('rot_traj_ex1.slx');

Use plotTransforms to plot the rotation trajectory.

numRotations = size(simOut.rotations,3);
translations = zeros(3,numRotations);
figure("Visible","on")

for i = 1:numRotations
 plotTransforms(translations(:,i)',simOut.rotations(:,i)')
 xlim([-1 1])
 ylim([-1 1])
 zlim([-1 1])
 drawnow
 pause(0.1)
end

2 Examples for Simulink Blocks

2-28

 Generate Rotation Trajectory

2-29

Use Custom Time Scaling for a Rotation Trajectory
This example shows how to specify custom time-scaling in the Rotation Trajectory block
to execute an interpolated trajectory. Two rotations are specified in the block to generate
a trajectory between them. The goal is to move between rotations using a nonlinear time
scaling with more time samples closer to the final rotation.

Specify the Time Scaling

Create vectors for the time scaling time vector and time scaling values. The time scaling
time is linear vector from 0 to 5 seconds at 0.1 second intervals. The time scaling values
follow a cubic trajectory with the appropriate derivatives specified for velocity and
acceleration. These values are used in the model.

tsTime = 0:0.1:5;
tsVals(1,:) = (tsTime/5).^3; % Position
tsVals(2,:) = ((3/125).*tsTime).^2; % Velocity
tsVals(3,:) = (18/125^2).*tsTime; % Acceleration

Open the Model

The Clock block outputs simulation time and is used for querying the rotation trajectory
at those specify time points. The full set of time scaling time and values are input to the
Rotation Trajectory block, but the Time input defined when to sample from this
trajectory. The MATLAB® function block uses plotTransforms to plot a coordinate
frame that moves along the generated rotation trajectory.

open_system("custom_time_scaling_rotation")

2 Examples for Simulink Blocks

2-30

Simulate the Model

Simulate the model. The plot shows how the rotation follows a nonlinear interpolated
trajectory parameterized in time. The model runs with a fixed-step solver at an interval of
0.1 seconds, so each frame is 0.1 seconds apart. Notice that the transformations are
sampled more closely near the final rotation.

sim("custom_time_scaling_rotation")
hold off

 Use Custom Time Scaling for a Rotation Trajectory

2-31

Execute Transformation Trajectory Using Manipulator
and Inverse Kinematics

This example shows how to generate a transformation trajectory using the Transform
Trajectory block and execute it for a manipulator robot using inverse kinematics.

Generate two homogenous transformations for the start and end points of the trajectory.

tform1 = trvec2tform([0.25 -0.25 1])

tform1 = 4×4

 1.0000 0 0 0.2500
 0 1.0000 0 -0.2500
 0 0 1.0000 1.0000
 0 0 0 1.0000

tform2 = trvec2tform([0.25 0.25 0.5])

tform2 = 4×4

 1.0000 0 0 0.2500
 0 1.0000 0 0.2500
 0 0 1.0000 0.5000
 0 0 0 1.0000

Import the robot model and specify the data format for Simulink®.

robot = importrobot('iiwa14.urdf');
robot.DataFormat = 'column';
show(robot);

2 Examples for Simulink Blocks

2-32

Open the model. The Transform Trajectory block interpolates between the initial and
final transformation specified in the block mask. These transformations are fed to the
Inverse Kinematics block to solve for the robot configuration that makes the end
effector reach the desired transformation. The configurations are output to the workspace
as configurations.

open_system('transform_traj_ex1.slx')

 Execute Transformation Trajectory Using Manipulator and Inverse Kinematics

2-33

Run the simulation and get the robot configurations.

simOut = sim('transform_traj_ex1.slx');

Show the robot configurations to animate the robot going through the trajectory.

for i = 1:numel(simOut.configurations/7)
 currConfig = simOut.configurations(:,:,i);
 show(robot,currConfig);
 drawnow
end

2 Examples for Simulink Blocks

2-34

Use Custom Time Scaling for a Transform Trajectory
This example shows how to specify custom time-scaling in the Transform Trajectory
block to execute an interpolated trajectory. Two transformations are specified in the block
to generate a trajectory between the two. The goal is to move between transforms using a
nonlinear time scaling where the trajectory moves quickly at the start and slowly at the
end.

Open the Model

A custom time scaling trajectory is generated using the Polynomial Trajectory block,
which gives the position, velocity, and acceleration defined by the custom time scaling at
the instant in time, as given by the Clock block. The Clock block outputs simulation time
and is used for querying the transformation trajectory at those specify time points. The
input Waypoints define the waypoints of the nonlinear time scaling to use and includes a
shorter time interval between points near the final time. The 3x1 time scaling, output
from the Polynomial Trajectory block as q, qd, and qdd, is input to the Transform
Trajectory block with the current clock time as the TSTime, which indicates this is the
time scaling at that instance. The MATLAB® function block uses plotTransforms to
plot a coordinate frame that moves along the generated transformation trajectory.

open_system("custom_time_scaling_transform")

Simulate the Model

Simulate the model. The plot shows how the transformation follows a nonlinear
interpolated trajectory parameterized in time. The model runs with a fixed-step solver at
an interval of 0.1 seconds, so each frame is 0.1 seconds apart. Notice that the
transformations are sampled more closely near the final transformation.

sim("custom_time_scaling_transform")
hold off

 Use Custom Time Scaling for a Transform Trajectory

2-35

2 Examples for Simulink Blocks

2-36

Generate Trapezoidal Velocity Trajectory
This example shows how to generate a trapezoidal velocity trajectory using the
Trapezoidal Velocity block.

Open the model. The waypoints are specified in the block mask. The position and velocity
outputs are connect to scopes and the position is plotted to an XY Plot. The Time input is
just a ramp signal to simulate time progressing.

open_system('trapvel_traj_ex1.slx')

Run the Simulation. The first figure shows the output of the q vector for the positions of
the trajectory. The second figure shows the qdd vector for the velocity. Notice the
trapezoidal profile for each waypoint transition. The XY Plot shows the actual 2-D
trajectory, which hits the specified waypoints.

Positions

 Generate Trapezoidal Velocity Trajectory

2-37

Velocities

2 Examples for Simulink Blocks

2-38

 Generate Trapezoidal Velocity Trajectory

2-39

2 Examples for Simulink Blocks

2-40

Compute Velocity Product for Manipulators in Simulink
This example shows how to calculate the velocity-induced torques for a robot manipulator
by using a rigidBodyTree model. In this example, you define a robot model and robot
configuration in MATLAB® and pass them to Simulink® to be used with the manipulator
algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the
homeConfiguration function to get the home configuration or home joint positions of
the robot.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and configuration vector.

open_system('velocity_product_example.slx')

 Compute Velocity Product for Manipulators in Simulink

2-41

2 Examples for Simulink Blocks

2-42

Run the model. The Velocity Product block calculates the torques induced by the given
velocities. Verify these values by passing the same velocities to the Inverse Dynamics
block with no acceleration or external forces.

See Also
Blocks
Forward Dynamics | Get Jacobian | Gravity Torque | Inverse Dynamics | Joint Space Mass
Matrix

Classes
RigidBodyTree

Functions
externalForce | homeConfiguration | importrobot | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

 See Also

2-43

Plan Path for a Unicycle Robot in Simulink
This example demonstrates how to execute an obstacle-free path between two locations
on a given map in Simulink®. The path is generated using a probabilistic road map (PRM)
planning algorithm (mobileRobotPRM). Control commands for navigating this path are
generated using the Pure Pursuit controller block. A unicycle kinematic motion model
simulates the robot motion based on those commands.

Load the Map and Simulink Model

Load the occupancy map, which defines the map limits and obstacles within the map.
exampleMaps.mat contain multiple maps including simpleMap, which this example
uses.

load exampleMaps.mat

Specify a start and end locaiton within the map.

startLoc = [5 5];
goalLoc = [12 3];

Model Overview

Open the Simulink Model

open_system('pathPlanningUnicycleSimulinkModel.slx')

The model is composed of three primary parts:

• Planning
• Control
• Plant Model

2 Examples for Simulink Blocks

2-44

Planning

The Planner MATLAB® function block uses the mobileRobotPRM path planner and
takes a start location, goal location, and map as inputs. The blocks outputs an array of
waypoints that the robot follows. The planned waypoints are used downstream by the
Pure Pursuit controller block.

 Plan Path for a Unicycle Robot in Simulink

2-45

Control

Pure Pursuit

The Pure Pursuit controller block generates the linear velocity and angular velocity
commands based on the waypoints and the current pose of the robot.

Check if Goal is Reached

The Check Distance to Goal subsystem calculates the current distance to the goal and if
it is within a threshold, the simulation stops.

2 Examples for Simulink Blocks

2-46

Plant Model

The Unicycle Kinematic Model block creates a vehicle model to simulate simplified
vehicle kinematics. The block takes linear and angular velocities as command inputs from
the Pure Pursuit controller block, and outputs the current position and velocity states.

Run the Model

To simulate the model

simulation = sim('pathPlanningUnicycleSimulinkModel.slx');

Visualize The Motion of Robot

After simulating the model, visualize the robot driving the obstacle-free path in the map.

map = binaryOccupancyMap(simpleMap)

 Plan Path for a Unicycle Robot in Simulink

2-47

map =
 binaryOccupancyMap with properties:

 GridLocationInWorld: [0 0]
 XWorldLimits: [0 27]
 YWorldLimits: [0 26]
 DataType: 'logical'
 DefaultValue: 0
 Resolution: 1
 GridSize: [26 27]
 XLocalLimits: [0 27]
 YLocalLimits: [0 26]
 GridOriginInLocal: [0 0]
 LocalOriginInWorld: [0 0]

robotPose = simulation.UnicyclePose

robotPose = 428×3

 5.0000 5.0000 0
 5.0000 5.0000 -0.0002
 5.0001 5.0000 -0.0012
 5.0006 5.0000 -0.0062
 5.0031 5.0000 -0.0313
 5.0156 4.9988 -0.1569
 5.0707 4.9707 -0.7849
 5.0945 4.9354 -1.1140
 5.1075 4.9059 -1.1828
 5.1193 4.8759 -1.2030
 ⋮

numRobots = size(robotPose, 2) / 3;
thetaIdx = 3;

% Translation
xyz = robotPose;
xyz(:, thetaIdx) = 0;

% Rotation in XYZ euler angles
theta = robotPose(:,thetaIdx);
thetaEuler = zeros(size(robotPose, 1), 3 * size(theta, 2));
thetaEuler(:, end) = theta;

2 Examples for Simulink Blocks

2-48

for k = 1:size(xyz, 1)
 show(map)
 hold on;

 % Plot Start Location
 plotTransforms([startLoc, 0], eul2quat([0, 0, 0]))
 text(startLoc(1), startLoc(2), 2, 'Start');

 % Plot Goal Location
 plotTransforms([goalLoc, 0], eul2quat([0, 0, 0]))
 text(goalLoc(1), goalLoc(2), 2, 'Goal');

 % Plot Robot's XY locations
 plot(robotPose(:, 1), robotPose(:, 2), '-b')

 % Plot Robot's pose as it traverses the path
 quat = eul2quat(thetaEuler(k, :), 'xyz');
 plotTransforms(xyz(k,:), quat, 'MeshFilePath',...
 'groundvehicle.stl');

 pause(0.01)
 hold off;
end

 Plan Path for a Unicycle Robot in Simulink

2-49

© Copyright 2019 The MathWorks, Inc.

2 Examples for Simulink Blocks

2-50

Plan Path for a Differential Drive Robot in Simulink
This example demonstrates how to execute an obstacle-free path between two locations
on a given map in Simulink®. The path is generated using a probabilistic road map (PRM)
planning algorithm (mobileRobotPRM). Control commands for navigating this path are
generated using the Pure Pursuit controller block. A differential drive kinematic motion
model simulates the robot motion based on those commands.

Load the Map and Simulink Model

Load the occupancy map, which defines the map limits and obstacles within the map.
exampleMaps.mat contain multiple maps including simpleMap, which this example
uses.

load exampleMaps.mat

Specify a start and end locaiton within the map.

startLoc = [5 5];
goalLoc = [20 20];

Model Overview

Open the Simulink model.

open_system('pathPlanningSimulinkModel.slx')

The model is composed of three primary parts:

• Planning
• Control
• Plant Model

 Plan Path for a Differential Drive Robot in Simulink

2-51

Planning

The Planner MATLAB® function block uses the mobileRobotPRM path planner and
takes a start location, goal location, and map as inputs. The blocks outputs an array of
wapoints that the robot follows. The planned waypoints are used downstream by the Pure
Pursuit controller block.

2 Examples for Simulink Blocks

2-52

Control

Pure Pursuit

The Pure Pursuit controller block generates the linear velocity and angular velocity
commands based on the waypoints and the current pose of the robot.

Check if Goal is Reached

The Check Distance to Goal subsystem calculates the current distance to the goal and if
it is within a threshold, the simulation stops.

 Plan Path for a Differential Drive Robot in Simulink

2-53

Plant Model

2 Examples for Simulink Blocks

2-54

The Differential Drive Kinematic Model block creates a vehicle model to simulate
simplified vehicle kinematics. The block takes linear and angular velocities as command
inputs from the Pure Pursuit controller block, and outputs the current position and
velocity states.

Run the Model
simulation = sim('pathPlanningSimulinkModel.slx');

Visualize The Motion of Robot

After simulating the model, visualize the robot driving the obstacle-free path in the map.

map = binaryOccupancyMap(simpleMap);
robotPose = simulation.Pose;
thetaIdx = 3;

% Translation
xyz = robotPose;
xyz(:, thetaIdx) = 0;

% Rotation in XYZ euler angles
theta = robotPose(:,thetaIdx);
thetaEuler = zeros(size(robotPose, 1), 3 * size(theta, 2));
thetaEuler(:, end) = theta;

for k = 1:10:size(xyz, 1) % Plot the Robot's poses at every 10th step
 show(map)
 hold on;

 % Plot Start Location
 plotTransforms([startLoc, 0], eul2quat([0, 0, 0]))
 text(startLoc(1), startLoc(2), 2, 'Start');

 % Plot Goal Location
 plotTransforms([goalLoc, 0], eul2quat([0, 0, 0]))
 text(goalLoc(1), goalLoc(2), 2, 'Goal');

 % Plot Robot's XY locations
 plot(robotPose(:, 1), robotPose(:, 2), '-b')

 % Plot Robot's pose as it traverses the path
 quat = eul2quat(thetaEuler(k, :), 'xyz');
 plotTransforms(xyz(k,:), quat, 'MeshFilePath',...
 'groundvehicle.stl');

 Plan Path for a Differential Drive Robot in Simulink

2-55

 light;
 drawnow;
 hold off;
end

© Copyright 2019 The MathWorks, Inc.

2 Examples for Simulink Blocks

2-56

Plan Path for a Bicycle Robot in Simulink
This example demonstrates how to execute motion on an obstacle free path between two
random locations on a given offline map.

Load the Map and Simulink Model

Load map in MATLAB workspace

load exampleMaps.mat

Enter start and goal locations

startLoc = [5 5];
goalLoc = [12 3];

The imported maps are : simpleMap, complexMap and ternaryMap.

Open the Simulink Model

open_system('pathPlanningBicycleSimulinkModel.slx')

Model Overview

The model is composed of four primary operations :

• Planning
• Check if Goal is Reached
• Controller
• Bicycle Kinematic Model

 Plan Path for a Bicycle Robot in Simulink

2-57

Planning

This blocks takes a start location, a goal location and map as inputs and outputs an array
of wapoints which robot will follow. The planned waypoints are used downstream by the
Pure pursuit controller which outputs the angular and linear velocities given the current
pose of the robot and the planned waypoints as inputs.

2 Examples for Simulink Blocks

2-58

Check if Goal is Reached

If robot has reached the goal location, the simulaion is stopped.

Controller

Controller outputs the linear velocity and angular velocity based on the waypoints and the
robot's current pose. The Pure Pursuit Controller block is used for the same.

 Plan Path for a Bicycle Robot in Simulink

2-59

https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html

Bicycle Kinematic Model

Bicycle Kinematic Model creates a vehicle model to simulate simplified vehicle dynamics.
It takes linear and angular velocities as input from the Pure Pursuit Controller block, and
outputs i.e. state and stateDot which are the robot's state and the robot's state's time
derivative, respectively. The robot' state is also used to calculate the the distance to goal
and check if the robot has reached the goal location.

Run the Model

To simulate the model

simulation = sim('pathPlanningBicycleSimulinkModel.slx');

Visualize The Motion of Robot

To see the poses :

map = binaryOccupancyMap(simpleMap)

map =
 binaryOccupancyMap with properties:

 GridLocationInWorld: [0 0]
 XWorldLimits: [0 27]
 YWorldLimits: [0 26]

2 Examples for Simulink Blocks

2-60

 DataType: 'logical'
 DefaultValue: 0
 Resolution: 1
 GridSize: [26 27]
 XLocalLimits: [0 27]
 YLocalLimits: [0 26]
 GridOriginInLocal: [0 0]
 LocalOriginInWorld: [0 0]

robotPose = simulation.BicyclePose

robotPose = 304×3

 5.0000 5.0000 0
 5.0002 5.0000 -0.0002
 5.0012 5.0000 -0.0012
 5.0062 5.0000 -0.0062
 5.0313 4.9995 -0.0313
 5.1563 4.9877 -0.1569
 5.7068 4.7074 -0.7849
 5.8197 4.6015 -0.6638
 5.9427 4.5193 -0.5157
 6.6589 4.4144 0.2249
 ⋮

numRobots = size(robotPose, 2) / 3;
thetaIdx = 3;

% Translation
xyz = robotPose;
xyz(:, thetaIdx) = 0;

% Rotation in XYZ euler angles
theta = robotPose(:,thetaIdx);
thetaEuler = zeros(size(robotPose, 1), 3 * size(theta, 2));
thetaEuler(:, end) = theta;

for k = 1:size(xyz, 1)
 show(map)
 hold on;

 % Plot Start Location
 plotTransforms([startLoc, 0], eul2quat([0, 0, 0]))

 Plan Path for a Bicycle Robot in Simulink

2-61

 text(startLoc(1), startLoc(2), 2, 'Start');

 % Plot Goal Location
 plotTransforms([goalLoc, 0], eul2quat([0, 0, 0]))
 text(goalLoc(1), goalLoc(2), 2, 'Goal');

 % Plot Robot's XY locations
 plot(robotPose(:, 1), robotPose(:, 2), '-b')

 % Plot Robot's pose as it traverses the path
 quat = eul2quat(thetaEuler(k, :), 'xyz');
 plotTransforms(xyz(k,:), quat, 'MeshFilePath',...
 'groundvehicle.stl');

 pause(0.01)
 hold off;
end

2 Examples for Simulink Blocks

2-62

© Copyright 2019 The MathWorks, Inc.

 Plan Path for a Bicycle Robot in Simulink

2-63

Plot Ackermann Drive Vehicle in Simulink
This example shows how to plot the position of an Ackermann Kinematic Model block and
change it's vehicle velocity and steering angular velocity in real-time.

Open the Simulink model.

open_system("plotAckermannDriveSimulinkModel.slx");

Ackermann Kinematic Block

The Ackermann Kinematic Model block parameters are the default values, but it is
important to note two parameters for this example, the Vehicle speed range and
Maximum steering angle. Both parameters limit the motion of the vehicle. The lower
bound of the Vehicle speed range parameter is set to -inf and the upper bound is set
to inf, so the vehicle velocity can be any real value you set. The Maximum steering
angle is set to pi/4, so there's a max turning radius that the vehicle can achieve.

Vehicle and Steering Velocity

The Ackermann Kinematic Model block takes two inputs, vehicle velocity and steering
angular velocity. This model uses Slider Gain blocks to change the inputs.

These values can be any real values within the parameter constraints set in the
Ackermann Kinematic Model block.

2 Examples for Simulink Blocks

2-64

Graphing the Output

Using a demux block, the x and y signals of the state output connect to a XY Graph
block. The signals of stateDot and the other two signals of state connect to Display
blocks.

Run the Model

• Set the model run time to inf.
• Click Play to run the model. The graph will appear and you can see the path of the

vehicle.
• Open the Slider Gain blocks and adjust the values of the blocks to see their affects on

the path of the vehicle.
• Adjust the graph limits as needed.
• Observe the Steering Angle display as you adjust the value of the Steering Gain.

 Plot Ackermann Drive Vehicle in Simulink

2-65

Follow Joint Space Trajectory in Simulink
This example shows how to use a Joint Space Motion Model block to follow a trajectory
in Simulink.

This example uses the Kinova Gen3 manipulator robot to follow the trajectories. Load the
Gen3 manipulator using loadrobot and save the RigidBodyTree output as gen3. Open
the Simulink model.

[gen3,metadata] = loadrobot("kinovaGen3");

Open the simulink model.

open_system("followJointSpaceTrajectoryModel.slx");

Plan Trajectory

The Polynomial Trajectory block generates a trajectory from a set of waypoints
specified in the Waypoints parameter in joint space. This example uses five time points,
specified row vector and also the Kinova Gen3 has seven degrees of freedom, so the
waypoints matrix must be a 7-by-5 size matrix. The block is set up to generate a new set
of waypoints every simulation.

Motion Model

The Joint Space Motion Model uses a RigidBodyTree, gen3, to calculate the joint positions
to reach the random trajectory generated by the Polynomial Trajectory block. Leave the
other block parameters as default.

2 Examples for Simulink Blocks

2-66

Visualize Results

The joint target positions and the calculated joint values from the Joint Space Motion
Model connect to a Scope block. Using the legend, you can select a smaller set of signals
to compare with better clarity.

 Follow Joint Space Trajectory in Simulink

2-67

Observe that the signals for the first joint start separated, and overlap when time is equal
to 1s. So from the initial configuration, the first joint was able to follow the trajectory.

2 Examples for Simulink Blocks

2-68

 Follow Joint Space Trajectory in Simulink

2-69

Follow Task Space Trajectory in Simulink
This example shows how to use a Task Space Motion Model to follow a task space
trajectory.

Load Robot and Simulink Model

This example uses a Kinova Gen3 manipulator robot. Load the model using loadrobot.

[gen3,metadata] = loadrobot("kinovaGen3",'DataFormat','column');
initialConfig = homeConfiguration(gen3);
targetPosition = trvec2tform([0.6 -.1 0.5])

targetPosition = 4×4

 1.0000 0 0 0.6000
 0 1.0000 0 -0.1000
 0 0 1.0000 0.5000
 0 0 0 1.0000

Open the Simulink model.

open_system("followTaskSpaceTrajectoryModel.slx")

Trajectory Generation

The Transform Trajectory block creates a trajectory between the initial homogeneous
transform matrix of the end effector of the Gen3, and the target position over a 3 second
time interval.

2 Examples for Simulink Blocks

2-70

Follow Trajectory

The Joint Space Motion Model uses a RigidBodyTree, gen3, to calculate the joint positions
to follow the trajectory. The joint positions are converted to homogeneous transform
matrices and then the converted to a translation vector so that it is easier to visualize.

Visualize Results

The joint target positions and the calculated joint values from the Task Space Motion
Model connect to a Scope block. Using the legend, you can select a smaller set of signals

 Follow Task Space Trajectory in Simulink

2-71

to compare with better clarity. Observe that the x, y, and z positions of the end effector
match closely with the x, y, and z positions of the trajectory to the target position.

2 Examples for Simulink Blocks

2-72

